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Abstract. As the number of sequenced genomes has grown, we have become 
increasingly aware of the impact of horizontal gene transfer on our understand-
ing of genome evolution. Methods for detecting horizontal gene transfer from 
sequence abound. Among the most accurate are methods based on phylogenetic 
tree inference, but even these can perform poorly in some cases, such as when 
multiple trees fit the data equally well. In addition, they tend to be computation-
ally intensive, making them poorly suited to genomic-scale applications. We  
introduce a new method for detecting horizontal transfer that incorporates the 
distances typically used by phylogeny-based methods, rather than the trees 
themselves. We demonstrate that the distance method is scalable and that it per-
forms well precisely in cases where phylogenetic approaches struggle. We con-
clude that a distance-based approach may be a valuable addition to the set of 
tools currently available for identifying horizontal gene transfer.  

1   Introduction 

Horizontal or lateral gene transfer, the transfer of genes between genomes rather than 
by “vertical” inheritance from ancestors, has been known to occur among prokaryotes 
for many years (Davies 1996) and is increasingly of interest in eukaryotes as well 
(Doolittle 1998; Hotopp et al. 2007). Horizontally acquired genes can affect how we 
develop and interpret sequence and functional annotation. The extent and sources of 
horizontal gene transfer (HGT) in an organism may even affect our ability to recon-
struct the entire organism’s evolutionary history (Doolittle 1999). A wide range of al-
gorithms for identifying horizontal gene transfer have been suggested, from sequence 
composition methods to homology searching to phylogenetic approaches.   

Sequence composition methods (Mrazek and Karlin 1999) rely on the observation 
that sequences transferred from a distant genome retain some of the codon and se-
quence bias of the original organism, which they lose over time (Lawrence and Och-
man 1997). These are among the most efficient and scalable approaches to HGT  
detection, but they can fail in two important cases: when the transfers are ancient or 
when they are among sufficiently similar species. 
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Homology methods, in which conclusions are drawn from the species distributions 
of the genes’ closest neighbors, also scale to whole genomes (Lander et al. 2001; Po-
dell and Gaasterland 2007), but annotation errors, incomplete databases, and gene loss 
raise serious questions about the accuracy of such methods (Salzberg et al. 2001).    

In many cases, the best-performing algorithms use phylogenetic approaches to re-
construct the evolutionary histories of genomes and individual genes (Eisen 2000). A 
number of such “tree-based” approaches have been considered, most of which com-
pare inferred trees for individual genes to a “correct” tree showing the overall phy-
logenetic relationships of the considered species (Robinson 1981; Shimodaira 2002). 
Such methods are the only ones that incorporate putative evolutionary relationships. 
Bottom-up tree construction methods, such as the neighbor-joining algorithm (Saitou 
and Nei 1987), often identify fine structure successfully and so perform relatively 
well at identifying transfers even between similar species.   

However, even tree-based approaches are imperfect. First, they generally require 
construction of a phylogenetic tree for each gene under consideration. Thus, they are 
slow and tend to scale poorly to genome-wide applications. In addition, inference of 
correct phylogenetic trees is a difficult problem, and inferred gene trees can be incor-
rect, particularly when lineages evolve at different rates (Anderson and Swofford 
2004). There are two commonly-used approaches to building the “consensus” tree 
needed by typical tree-based methods: inferring a phylogenetic tree for each gene and 
then constructing a consensus of these trees; or else concatenating all the gene se-
quences together and inferring a tree representing these concatenated sequences. In ei-
ther case, an incorrect consensus tree will cause errors in the entire algorithm.    

We introduce an approach that has many of the strengths of phylogenetic ap-
proaches but avoids some of their pitfalls. Specifically, we use the same pairwise dis-
tances used by phylogenetic inference algorithms to detect horizontal transfer without 
building the trees themselves. Since determining the optimal tree topology is the most 
computationally-intensive part of the tree-based HGT-detection process, a distance-
based approach runs much more quickly, allowing scanning of whole genomes. Fur-
thermore, there is no “consensus” tree, so this method doesn’t suffer in cases where 
no single tree that fits all of the data well. Instead, we consider how the relative pair-
wise distances between species in one gene family relate to those relative distances in 
another. Thus, our method can accommodate genes with different rates of evolution 
and genes that appear in different sets of species. Because it relies only on the pair-
wise species distances, we refer to this as the Distance Method.   

As an example, consider the tree in Figure 1 showing five species (labeled A – E). 
One might expect that for most genes, sequence-derived distances between orthologs 
in D and E would be small, while distances between orthologs in A and D would be 
larger. However, suppose that a gene from D had relatively recently transferred into 
A’s genome. Then the sequence-derived distance between that gene in D and its clos-
est ortholog in A would be surprisingly small, while the distance between the 
orthologs in A and B would be surprisingly large. We detect these unusual events us-
ing these distances, avoiding the hazards of errors that can be introduced in the tree-
construction process and the computational cost of building the trees. Our method 
compares the pairwise species distances among different gene families and reports the 
number of unusual-looking distances detected in each family.  
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Fig. 1. A hypothetical tree of five species, A-E. Note that if a gene from D had been transferred 
into A’s genome, the distances between that gene (D’) in A and E would be surprisingly small, 
while that between A and B would be surprisingly large. Our method detects HGT by observing 
these differences.   

2   Methods 

This section first introduces the computational method used to identify horizontally 
transferred genes.  Next, it describes the construction of test data sets used to evaluate 
the computational approach.   

2.1   Identification of Horizontally Transferred Genes  

Given a species in which we want to find HGT, we start by identifying a set of related 
species for comparison. In the experiments described here, we followed the example 
of (Lerat et al. 2003) in selecting E. coli K12 as our target genome, and a commonly-
studied set of 12 other gamma-Proteobacteria (see Table 1) as additional species for 
comparison. We aim to identify genes from E. coli whose evolutionary history with 
respect to the other species in our data set is unusual.   

The basic assumption behind our algorithm is that, for a given pair of species, the 
sequence-derived distances between any two orthologous genes in those two species 
should be similarly ranked, when compared to the distances between other members 
of the same gene family in other species pairs. Note that this assumption allows for 
variation in the evolutionary rates of genes. 

For example, in Figure 1, for any gene with orthologs in all five species we expect 
the corresponding sequences in species A and B to be closer than those in A and D. If 
they are not, it suggests that the evolutionary history of that gene may be atypical. 
Specifically, if a gene has been recently transferred from another species (whether 
among those in the data set or outside it), we expect these distance ranks to be unusual 
for many species pairs. Our algorithm identifies such genes. We refer to these HGT 
candidates as “outlier” genes because of their unusual distance distributions. 

Computing Pairwise Species Distances. For each gene in the target genome, we 
identify all orthologous genes in each other species in the data set using BLASTP 
(Altschul et al. 1997; Schaffer et al. 2001) with an E-value below 10-20. For simplic-
ity, we use the single best BLAST hit in each species to identify orthologous genes, 
though ultimately more sophisticated approaches may be valuable (Remm et al. 2001; 
Podell and Gaasterland 2007). For each gene having at least three detectable orthologs  
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in species other than the target genome, we then construct multiple sequence align-
ments for the gene family using ClustalW (Thompson et al. 1994). Given these 
alignments, the protdist function in PHYLIP (Felsenstein 2002) calculates the dis-
tances between each pair of sequences in the alignment. 

We note that multiple sequence alignments can be unreliable, just as inferred phy-
logenetic trees can, so the distances produced by PHYLIP may be incorrect. However, 
our method does not need to resolve inconsistencies among the distances by choosing 
a single tree. Thus, it may be less sensitive than phylogenetic methods to errors or in-
consistencies in the inferred distances.   

Detecting “Outlier” Genes. Different genes evolve at different rates. If we were to 
rely on raw distances to identify genes whose evolutionary history appears unusual, 
genes evolving particularly quickly or slowly would be at the top of the list. To avoid 
this effect, we first normalize the distance data. Specifically, for each gene family and 
species, we z-score normalize the set of pairwise distances between the gene in that 
species and all other species (in which a unique best ortholog for that gene is 
detectable). For example, in a data set of 190 genes in 13 species (as in Dataset 1, 
below), we would z-score normalize 2470 sets (corresponding to 190 genes * 13 
species) of 12 distances each (corresponding to the other orthologs of that gene).   

To pick our “outliers” we create a distance vector for each pair of species; in the 
same example, there would be 13 * 12 distance vectors, each of length 190 (corre-
sponding to the total number of E. coli genes). For each pair of species, we then com-
pute the mean and standard deviation of the values in that distance vector, and we 
identify as outliers any genes that are more than c standard deviations from the mean.1 
Then, we count up how many of these flagged outliers over all species-pair vectors 
belong to the same gene. A gene that is flagged as an outlier in this way in more than 
half the species pairs that include species S is considered an outlier gene for species 
S. We then consider species S an outlier species for that gene. Genes with one or 
more outlier species are reported as having an unusual evolutionary history.  

Clustering Gene Families by Species. Though normalization is necessary to account 
for different rates of evolution, an unwelcome side-effect of normalization is that 
genes existing in only a small number of species are more likely to be chosen as 
outliers. However, to be applicable on a genome-wide level, our approach must be 
able to handle genes with detectable orthologs in only a small number of species. This 
missing-data bias disappears when comparisons are made among sets of genes 
occurring in roughly similar sets of species. Thus, we pre-process our data by 
clustering the E. coli genes according to the sets of species in which unique orthologs 
are identifiable. We call this procedure the Hamming Distance Clustering step.   

To start, we define a species set as a set of genes whose orthologs are detectable 
(by the BLAST method described above) in exactly the same subset of the considered 
species. We call a species set large if it contains more than 30 genes, and we assume 

                                                           
1  For all experiments in this paper, we choose c = 2.326, which would correspond to about 2% 

of the data in each vector if the distances are normally distributed. In practice, they are not, 
but the top half of the data – that part not constrained by the fact that distances must be non-
negative – is close.   
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there are k species in our data set. Initially, each large species set becomes the core of 
its own cluster. We now extend these clusters to include the rest of the genes. We do 
this by an iterative process. 

First, for each existing cluster C in decreasing order by size, let vC be a binary vec-
tor of length k indicating the species in which the genes in C appear. Now, consider in 
turn each species set S not already clustered, and create binary indicator vector vS for 
set S. If the Hamming distance between vC and vS is at most 2, merge S into cluster C 
(without changing vC). When all S have been considered, we move on to the next core 
cluster and repeat the process. Finally, any remaining species sets are assigned to the 
cluster with the closest core Hamming distance. Once this pre-processing step has 
been completed, we run our outlier detection algorithm on each cluster and report any 
genes flagged as outliers in any cluster.   

2.2   Construction of Test Data Sets 

Here we describe the data sets we used to evaluate our approach. We started by 
downloading thirteen completed gamma-Proteobacteria genomes from the NCBI Ge-
nome database in November, 2006. Only the encoded protein sequences were used in 
this project. Table 1 summarizes the data from these 13 species, which are exactly 
those chosen by (Lerat et al. 2003). We then constructed three different data sets, 
which are summarized in Table 2. 

Table 1. The thirteen gamma-Proteobacterial genomes from which our test data sets were 
constructed  

Species Abbrev. Genome ID # of  proteins 
Buchnera aphidicola APS BA NC_002528 564 
Escherichia coli K12 EC NC_000913 4,243 
Haemophilus influenzae rd HI NC_000907 1,657 
Pseudomonas aeruginosa PAO1 PA NC_002516 5,566 
Pasteurella multocida Pm70 PM NC_002663 2,015 
Salmonella typhimurium LT2 ST NC_003197 4,425 
Vibrio cholerae VC NC_002505,NC_002506 3,835 
Wigglesworthia brevipalpis WB NC_004344 611 
Xanthomonas axonopodis  XA NC_003919 4,312 
Xanthomonas campestris  XC NC_003902 4,181 
Xylella fastidiosa 9a5c XF NC_002488 2,766 
Yersinia pestis CO92 YC NC_003143 3,885 
Yersinia pestis KIM YK NC_004088 4,086 

Dataset 1: Comparison with Lerat’s HGT Method. The first dataset was designed 
to determine whether we could identify the same cases of horizontal gene transfer 
(bioB and mivN) as the consensus-tree approach described in (Lerat et al. 2003). Of 
the 205 genes in their data set, we were able to identify 189 of them in our database 
(presumably because the E. coli genome annotation has changed somewhat in the in-
tervening years). In fact, only 168 of the 189 genes had orthologs detected by our cri-
teria in all of the 13 species considered. (This is because of differences between their 
methods and ours for identifying orthologs.) Given these differences, we therefore 
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added in one other known example of horizontal gene transfer, the tadA gene (Planet 
2006). In total, Dataset 1 contains 190 genes.  

 
Dataset 2: Calculating Sensitivity. This dataset is designed to test the sensitivity of 
our method. The problem with calculating the sensitivity, specificity, or indeed any 
measure of accuracy of an HGT detection method is that, for most real data, the right 
answers are unknown.  Specifically, it is impossible to identify the line between true 
positives and false positives. However, we can take advantage of an idea of Poptsova 
and Gogarten (Poptsova and Gogarten 2007) to create a small subset of data where we 
know that the evolutionary history of some specific genes is abnormal, because we’ve 
“spiked” in those abnormal sequences ourselves.   

In this data set, we restricted our attention to genes that were best reciprocal 
BLAST hits between each pair of species. Thus, only 148 genes from Dataset 1 were 
selected to form Dataset 2. To simulate horizontal gene transfer between E. coli and 
another species in the data set, we randomly select one of the other species and swap 
the orthologous gene sequences between E. coli and that other species.  

In fact, Dataset 2 is really comprised of 10 sub-datasets. Each sub-dataset contains 
the same 148 genes, but includes 10 different randomly-chosen swapped genes. In to-
tal, there are 100 simulated “outlier” genes planted in Dataset 2. 

 
Dataset 3: A Genomic-Scale Test Case. There are 4243 E. coli K12 genes in the  
genome sequence we downloaded. However, for our distance method to work, we re-
quire that genes have more than 3 detectable orthologs among the 13 species. We se-
lected all 2853 E. coli genes meeting this criterion, and their orthologs in the other 
species, to form Dataset 3. 

Table 2. Summary of test data sets   

 Dataset 1 Dataset 2 Dataset 3 
Number of genes  190 148 per sub-dataset 2853 
Number of subsets None 10  None 
Known outliers None 10 per sub-dataset None 
Demonstrates Feasibility Sensitivity Genomic Scale 

3    Results 

3.1   Feasibility 

We first ran our algorithm on Dataset 1. The distance method identifies 19 of the 190 
genes (10%) as outliers; these are listed in Table 3. Experts disagree on the expected 
prevalence of horizontal gene transfer in bacterial genomes (Martin 1999), but values 
between 5 and 15% of the genome are common, so identifying 10% of the input genes 
in this set seems reasonable. However, because this data set contains only widely-
conserved genes, we do not necessarily expect this 10% outlier-detection rate to ex-
tend to the whole genome (see Section 3.3).   

The 19 gene list includes all three known examples of HGT: tadA (Planet 2006) 
and mviN and bioB (Lerat et al. 2003). We also note that there are several ribosomal 
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proteins on the list; previous work suggests that horizontal gene transfer is common 
among ribosomal protein families (Coenye and Vandamme 2005).    

Finally, the gene ileS appears on this list because of a database error:  the H. influ-
enzae genome sequence listed in Table 1 lacks the ileS (isoleucyl-tRNA synthetase) 
gene entirely. This is presumably a database error in the NCBI sequence – the gene  
itself is essential, and the gene appears in other versions of the genome. However, be-
cause of this absence, the best BLAST hit of the E. coli ileS gene in H. influenzae 
turns out to be valyl-tRNA synthetase. Thus, the evolutionary history of the gene ap-
pears to the algorithm to be unusual, so this gene is flagged as an outlier. We chose 
not to correct this error because its presence testifies to the algorithm’s efficacy.    

Table 3. Genes identified as outliers in Dataset 1. Known examples of HGT and the detected 
database error are shaded.   

rank # outlier species # orthologs Locus  Product name 
1 5 5 secE Translocase 
2 4 13 ileS isoleucyl-tRNA synthetase  
2 4 4 rpmD 50S ribosomal protein L30 
2 4 4 rpmF 50S ribosomal protein L32 
2 4 7 rplO 50S ribosomal protein L15 
6 2 13 bioB Biotin synthase 
6 2 13 mviN Predicted inner membrane protein 
6 2 13 ftsZ cell division protein FtsZ  
6 2 9 rplL 50S ribosomal protein L7/L12 
6 2 7 rpmG 50S ribosomal protein L33 

11 1 13 tadA tRNA-specific adenosine deaminase 
11 1 13 atpD ATP synthase subunit B  
11 1 13 ftsA cell division protein  
11 1 13 gltX glutamyl-tRNA synthetase  
11 1 13 htpX heat shock protein HtpX 
11 1 13 ribA GTP cyclohydrolase II protein  
11 1 8 rplY 50S ribosomal protein L25 
11 1 13 rpsJ 30S ribosomal protein S10  
11 1 11 yqgF Holliday junction resolvase-like protein  

3.2   Sensitivity 

To evaluate the performance of the distance method, we used the simulated anomalies 
in Dataset 2.  We combine the results from each of the ten trials to identify how many 
of 100 randomly “spiked” anomalous genes we were able to detect. For comparison, 
we also applied the AU (“approximately unbiased”) test (Shimodaira 2002) to the 
same data. The AU test is a tree-based method that has been shown to perform well in 
identifying horizontal gene transfer (Poptsova and Gogarten 2007).   

Overall, our distance method did not do as well as the AU test in finding the 
swapped genes in this data. Only 46 of the 100 swapped genes were identified, com-
pared to 74 under the AU test method. However, a closer analysis of which swaps 
were found by each method yields some interesting insights.   

Figure 2a shows the 100 swapped genes identified by the species with which the  
E. coli representative was swapped. The distance method failed to identify any swaps 
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between E. coli and the two Y. pestis genomes (YC and YK), which are highly similar 
to E. coli. But it did well on identifying swaps from many other organisms.   

The most interesting phenomenon illustrated in Dataset 2 is that the distance 
method identifies all exchanges between E. coli and B. aphidicola or W. brevipalpis, 
while the AU test results are much weaker for these genes. These two species are en-
dosymbionts, which are evolving more rapidly than other species in the data set. Their 
evolutionary relationship to each other and to the rest of the species in the data set is 
unclear. Some phylogenetic methods suggest that they are closely related to each 
other (Lerat et al. 2003), but others disagree (van Ham et al. 1997; Spaulding and von 
Dohlen 1998; Moya et al. 2002). We suspect that for sequences from these species, 
the tree-based AU test fails because long branch attraction (Anderson and Swofford 
2004) creates errors in the consensus tree. However, the distance method does not suf-
fer from this problem at all.   
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Fig. 2. Known outliers detected by the Distance Method and the AU test. a) Breakdown by 
source species. While the AU test outperforms the distance method overall, this is not the case 
for all species. In particular, the distance method identifies all spiked sequences deriving from 
the B. aphidocola and W. brevipalpis genomes. This is interesting because these symbiotic spe-
cies are rapidly evolving, so many tree inference methods have trouble placing them correctly. 
The distance method for detecting outliers avoids this pitfall. b) Breakdown by percent identity 
of the swapped sequences. Distance outperforms the AU test for dissimilar sequences, but per-
formance of the AU test falls off less dramatically as sequence similarity increases.   

Figure 2b shows the Dataset 2 results broken down by the degree of sequence iden-
tity between the swapped genes. These results demonstrate that the distance method 
does well in identifying swapped sequences with only moderate sequence similiarity, 
even in cases where tree inference methods struggle, but it has trouble when the 
spiked sequences are too similar to those of the host genome.   

It is possible that the distance method preferentially identifies rapidly-evolving 
genes, despite our attempts to account for this via normalization. To eliminate this 
possibility, we examined the “outlier species” for all 19 genes flagged as outliers in 
Dataset 1 (i.e., without swapped-in genes). Not a single gene was considered to be an 
outlier in B. aphidicola or W. brevipalpis. This is because the variance of the pairwise 
distances is large for these species, so we don’t identify their genes as being unusually 
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far from the mean.  Thus, z-score normalization appears to be effective, and our abil-
ity to detect transfers with these species in Dataset 2 is not an artifact.   

Finally, we measured the running times of the two methods on a typical run of 
Dataset 2 (one set of 148 genes). Both methods use BLAST and ClustalW as pre-
processing steps, which took ~5.75 minutes on our 2.4 GHz linux machine. Building 
the trees in PAML and running the AU test code in CONSEL required 46.5 min., not 
including time needed to construct a consensus tree (already known for the 13 species 
involved). In contrast, the distance method required 2.5 min. to calculate pairwise dis-
tances in PHYLIP for all pairs of species in all gene families, and then a total of 0.41 
seconds to identify outliers in all 148 genes.  

3.3   A Genome-Scale Application 

We ran the Distance Method on Dataset 3 to identify efficacy across a genomic-scale 
data set. A total of 214 genes (7.5%) were detected as outliers. The full list is avail-
able as supplementary data. Figure 3 shows that the probability of a gene’s being de-
tected as an outlier is slightly lower for genes detected in few species. This makes 
sense, because if the sequences exist in fewer species, there are fewer species pairs 
available to witness the unusual history for that gene. In addition, however, this result 
demonstrates that the clustering approach successfully overcomes any normalization-
induced bias towards selecting genes that appear in few species.   

The entire run took 110 minutes on our linux machine; 28 minutes of that was 
needed to compute distances in PHYLIP, and just under 6 seconds to identify outliers. 
In other words, the part of the distance method after the pre-processing step of identi-
fying orthologs and aligning them (shared with the AU test) took less real time for the 
entire genome than the unique AU test calculations did for just 148 genes.   
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Fig. 3. Percentage of the 214 outliers from Dataset 3 with detectable orthologs in different 
numbers of species   

To assess accuracy in this data set, we did not compare our results to tree-based 
methods, since none to our knowledge is suitable for genome-wide scanning. How-
ever, a newly-published method for re-ranking BLAST results has been proposed as a 
way to find previously-undetected HGT events on a genomic scale (Podell and Gaast-
erland 2007). We compare our results to theirs. In addition, we can search the litera-
ture for validation of our findings, though this is a labor-intensive process.   

DarkHorse (Podell and Gaasterland 2007) identifies putative horizontal gene trans-
fer using BLAST to detect closest neighbors, but extending attention beyond the sin-
gle best BLAST hit. Their method has been shown to be applicable on a genomic 
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scale and more sensitive than traditional BLAST searching, and it has already been 
tested on the E. coli genome. We compared our results to those reported as supple-
mental data in the DarkHorse paper.    

Because genes in Dataset 3 must have more than three detectable orthologs among 
the 13 species in our data set, many of the E. coli genes that DarkHorse predicts to be 
horizontally transferred are not included in Dataset 3.  However, of the 2853 genes in 
Dataset 3, DarkHorse predicts that 31 of them are examples of HGT between E. coli 
and another species. Among our list of predicted outliers, we have only 7 in common 
with this list of 31: ygfK, ygfO, ydcU, yjhH, yjhG, yagE, and paaH.   

This result raises two questions. First, how likely is it that we would find that many 
overlapping genes just by chance? To address this question, we chose 100 random 
sets of 214 genes from Dataset 3, and measured their intersection with the 31 genes in 
the DarkHorse list. In none of those 100 cases did we ever see seven intersecting 
genes, and in only one case did we even see as many as six.  

Second, in the cases where the two methods disagree, which is correct?  We offer 
no dispute of the DarkHorse predictions, except the general observation that different 
evolutionary rates, gene loss, and sequence annotation errors are known to limit the 
accuracy of homology-based methods (Eisen 2000). However, we manually searched 
for publications linking 60 of our predicted outliers to horizontal transfer between E. 
coli and another species. We found such evidence in 5 of the 60 cases:  trkG (Ly et al. 
2004), fhiA and fliS (Ren et al. 2005), agaV (Charbit and Autret 1998), and cmtA 
(Sprenger 1993). These data suggest that many of our novel predictions may be cor-
rect, and that a method that combines multiple approaches might be the best one.  

4    Conclusions 

Our results demonstrate the potential of using distances to detect HGT instead of full 
phylogenetic methods. The Distance Method described here identifies many known 
positive examples, including some missed by other methods, but also appears to miss 
some that other methods detect. Specifically, the Distance Method does particularly 
well at identifying outlier sequences with only moderate sequence similarity to the 
host gene, even in cases (such as rapidly evolving symbiotic organisms) where tree-
inference methods often fail. On the other hand, the Distance Method struggles to de-
tect transfers between closely related genomes. These transfers are challenging for 
any HGT method, but the AU Test outperforms the Distance Method here. 

These results suggest that, if there were a fast (genomic-scale) tree-based method 
with accuracy similar to that of the AU Test, the best solution would be to combine 
that method with the Distance Method. We consider these initial results promising, 
and we expect that further development of such approaches will yield a scalable 
HGT-detection method with high accuracy and speed.   

This work also has implications for another problem beyond that of HGT-
detection: the detection of unnatural genes in the environment. Genetically-modified 
genomes may appear in the environment by accident, such as when genetically-
modified organisms escape containment (Warwick et al. 2007), or by design, such as 
the malicious engineering of pathogenic organisms. We are interested in ways to iden-
tify signs of such “unnatural” DNA by sequence analysis. If we can reliably find 
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genes that appear to have been derived from a foreign source, content-based methods 
may help us infer whether the transfer was recent or ancient (Lawrence and Ochman 
1997), and functional analysis may suggest whether the transfer occurred naturally or 
with human intervention. Thus, a distance-based approach to identifying atypical 
lineages may prove to be a powerful, scalable tool for finding unnatural DNA.   
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