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1. Overview

In the Novum Organum [2] Francis Bacon described, as the first step in applying the scientific method, the
compilation of observational data, followed by the categorization of these observations and the generation
of hypotheses. Our tools facilitate this process by extensively characterizing protein sequence and structural
constraints leading to plausible hypotheses. From this may then follow the accumulation of additional
empirical results through further experimentation with the goal of better understanding how protein
molecular machines work at the atomic level. Our core hypothesis is that characterizing the most
statistically significant constraints will reveal otherwise overlooked protein properties responsible for
underlying molecular mechanisms. Because we seek to identify properties that biochemical and structural
studies have thus far failed to identify, we allow the data itself to reveal its most statistically surprising
features without making assumptions about what should be found. We argue that, in the absence of relevant
biochemical studies, it is only possible to directly link individual residues to other residues and such residue
sets to structural features. Hence, our approach focuses on these (observed) properties rather than on
predicting (unobserved) biochemical properties. Augmenting a knowledge of biochemical and structural
properties with visualization of functionally imposed constraints in this way can lead to plausible
hypotheses for experimental design.

Our tools are applied to protein superfamilies that have diverged into subgroups, each of which fills a
functional niche compatible with the superfamily’s common “core" structure. Within each subgroup,
proteins from distinct phyla often conserve residues at (non-active site) sequence positions that other related
proteins fail to conserve. Often a subgroup, G, is composed of smaller subgroups, each of which conserves
both residues due to G’s functional constraints and other residues due to constraints imposed by its own,
more specialized function. Repeated rounds of this evolutionary process have led to hierarchically
interrelated patterns of correlated residues and, in some cases, to networks of functionally critical residues
embedded within structurally defined clusters. Moreover, for proteins sharing a common core structure,
3D contacts between pairs of (often non-conserved) residues generally produce correlated substitution
patterns: Over evolutionary time substitutions at one residue position often result in compensating
substitutions at other positions to maintain critical interactions. This leads to a correspondence between
covarying residue pairs and 3D contacts. Hence, our tools can characterize statistically significant
constraints appearing as residues co-conserved in functionally related subgroups, as subtle pairwise
correlations, and as correlations among these sequence features or with structural features. These can also
be applied, of course, to proteins that functionally interact with proteins of primary interest.

A fundamental question in biology is: How do proteins sharing a common structural core perform
entirely different functions? For example, AAA+ ATPases mediate diverse cellular activities, including
membrane fusion, DNA replication, microtubule dynamics, intracellular transport, transcriptional
activation, protein refolding or degradation, and the assembly and disassembly of protein complexes. By
identifying diverse types of statistically significant constraints within sequence and structural data, our
approach both addresses this question and obtains evidence for how such molecular machines work. This
can suggest plausible hypotheses regarding the roles of various categories of residues responsible for
functional specificity. Such residues may be remote from an enzyme’s active site and may often mediate
function through dynamic interactions with each other or with specific cofactors and substrates. For this
reason, it can be helpful to apply our tools in conjunction with molecular dynamics simulations.
Characterizing protein properties in this way may help guide protein engineering efforts, provide insights
into the molecular basis of human disease, identify potential antibiotic target sites in bacterial proteins, and
aid the design of highly target-specific drugs.

This document describes a suite of programs for identifying determinants of protein functional
specificity that were developed in collaboration with statisticians Stephen F. Altschul (NCBI, NIH)(Gibbs
sampler, GISMO, BPPS, STARC, SIPRIS, DARC, cCOMPASS), Jun S. Liu (Harvard)(Gibbs sampler,
GISMO, BPPS), and Charles E. Lawrence (Brown University)(Gibbs sampler).




2. Statistics and probability in biology
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Due to the inherent variability of biological systems, a
protein, such as the tumor suppressor p53 shown above, does
not correspond to a specific sequence, but instead must be
defined probabilistically as an evolutionary ensemble of
sequences sharing a common cellular function. This
ensemble can be modeled statistically as a high dimensional
probability distribution over every possible sequence. A
generative statistical model (e.g., a hidden Markov model or
HMM) can ‘emit’ sequences with probabilities defined by
such a distribution. HMMs are described in section 3 below.

Analogy between our approach and classical genetics.
Classical geneticists obtained evidence for pairs of linearly
ordered genes based on patterns of inherited traits in the
absence of any direct cytological or molecular data.
Likewise, our approach obtains evidence for underlying
proteins mechanisms based on patterns within sequence and

of a
distribution. The x,y-plane corresponds to a
projection of the ‘space’ of all proteins onto 2-
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dimensions with similar sequences
corresponding to points in the plane that are
nearer to each other. The z-dimension plots the
probability that each sequence (i.e., each point
in the plane) is a p53 tumor suppressor protein.
The point of highest probability may be viewed
as a consensus sequence for p53.

structural data. Just as correlations associated with inherited
traits are due to each gene’s chromosomal location, correlations associated with protein sequence and
structure are due to each residue’s biochemical function. Just as hypotheses generated by early genetic
analyses have been validated by cytological and genomic studies, our goal is to generate plausible
hypotheses that can be validated by biochemical and biophysical studies. However, just as genetic analysis
works well for some organisms (e.g., peas), but not for others (e.g., hawkweed), there are protein
superfamilies for which our approach works much better than for others. Therefore, it is best to focus on
those superfamilies most amenable to analysis, of which there are many.

Frequentist vs Bayesian statistics. We utilize both frequentist and Bayesian statistics. A frequentist assigns
probabilities to data, not to hypotheses. Hence, the frequentist looks for the probability of observing the
data given a model (termed the null hypothesis). A

More likely observation

frequentist often focuses on p-values. A p-value (green v
g

shaded area in the figure on the right) is the probability of
an observed or more extreme result assuming that the null
hypothesis is true.

In contrast, a Bayesian assigns probabilities to
hypotheses, arguing that all that we know for certain is
the observed data; we can’t observe the underlying model
generating the data. Bayesian statistics incorporate prior
probabilities and updates model probabilities as more data
become available. Prior probabilities provide a way to incorporate either general knowledge about the
model or else no information at all, the latter being termed a non-informed prior where each outcome is
treated as equally likely a priori.
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Note that a Bayesian approach tells us what can reasonably be inferred
given the available data. For example, consider a simple experiment that
probabilistically predicts a coin’s true property based on the observed data
(i.e., the coin flips). Such a probabilistic (or ‘blurry’) description most
accurately represents what the data is telling us. Without such statistical
criteria, one can easily be misled either by being too cautious or by not

being careful enough.
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Bayesian version of the scientific method. Our tools are largely based on Bayesian Markov chain Monte
Carlo (MCMC) sampling, an approach that considers multiple alternative models concurrently: Instead of
a single hypothesis regarding a specific model (termed M;) being consistent or inconsistent with the outcome
of a particular experiment, every possible model is assigned a specific probability of being correct given
many empirical observations (termed D), which in our case corresponds to sequence and structural data.
Typically, one cannot compute probabilities for every model, so Bayesian procedures rely—as does the
scientific method itself—on iterating between hypothesis testing and model refinement using MCMC

sampling. In each iterative step, n, alternative hypotheses
regarding a particular modeled property, x, are evaluated
(while other properties are held constant) by computing
model probabilities over the full range of possible
hypotheses for that property (i.e., P(M,;| D) for 0 <j <ny).
That property of the model is then updated according to the
outcome of these ‘experiments’ (i.e., proportional to the
computed probabilities for each hypothesis). MCMC
sampling iterates through all model properties in this way
until convergence on the most probable models. When the
underlying probability distribution is multimodal, as in the
figure shown, the sampler can be run from multiple starting
points to find a near global optimum.
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3. Multiple Sequence Alignment (the Gibbs sampler and GISMO)

Multiple sequence alignment (MSA) via MCMC sampling. The following describes how the Gibbs
sampler identifies and aligns ungapped conserved regions (termed ‘blocks’) within protein sequences. The
sampler starts by arbitrarily selecting a candidate site in each sequence; these will of course be very unlikely
to correspond to conserved regions. Next, it iteratively realigns each site proportional to its similarity with
the other aligned blocks, which, over time, favors the alignment of conserved over unconserved regions.
Eventually the sampler converges on alignment of the conserved regions; this typically requires application
of simulated annealing where the sampling “temperature” is gradually lowered (i.e., by distorting the
sampling probabilities to favor higher probability sites and disfavor lower probability sites more strongly).

The Gibbs sampler is particularly useful for detecting subtly conserved repeats, as illustrated by our
discovery of B-propeller-like repeats in UV-damaged DNA-binding protein [3], and of HEAT repeats in
certain chromosome condensation components [4]. The B-propeller prediction was later confirmed through
crystal structure analysis [S]. The HEAT-repeat prediction led to our discovery (based on the presence of
similar HEAT repeats in hypothetical proteins) of a new

! Molecules in solution Alignment by MCMC sampling
vertebrate condensin component [6]. To detect subtly conserved

blocks in a set of protein sequences, however, it is important to e 13
eliminate closely related sequences, which would introduce very —
strong signals to mislead the sampler. This is done either using conserved patemn =
our purge program [7] or USil'lg the (heuriStiC) cd-hit program Motion due to attractive forces Realignment prnional to

(by Weizhong Ll) [8], both of which take as input a set of fasta  between molecules and heat similarity between sequences
formatted protein sequences.

How Gibbs sampling works 1is analogous to how
crystallization occurs based on statistical thermodynamics.
Starting from an arbitrary ‘state’ a thermodynamic ‘system’
evolves due to internal ‘forces’ and random fluctuations. The
attractive forces gradually bring similar ‘objects’ together. So,
just as some molecules begin to aggregate, some sequences are
aligned more or less correctly. Eventually both ‘systems’ reach
equilibrium and given an appropriate temperature the molecules
crystalize out of solution and the conserved regions are aligned.

Molecules crystallize Conserved regions are
out of solution aligned

MCMC sampling and assignment uncertainty. An
additional advantage of MCMC sampling is that it can
provide a measure of model uncertainty as illustrated by
the flipped coin example above. This involves continuing
to sample among alternative models after convergence, in
which case uncertain aligned blocks will tend to change
but more certain aligned blocks will tend to be retained.
The frequency with which states are sampled estimates
the probability of that prediction being correct. For
example, the figure on the left highlights in red and orange
those B-strands in bacterial porins that the Gibbs sampler
assigned predictive probabilities > 0.75 and > 0.25,
respectively. These porins form homotrimers, arranged as
shown in panel B, with conserved repeats located at non-
interacting surface regions.
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GISMO (Gibbs Sampler for Multi-alignment Optimization) uses MCMC sampling to search for a protein
hidden Markov Model (HMM) that is most likely to have generated a set of input sequences [9,10]. In
the process, it multiply aligns

the sequences while also ~Mcwdlopeptidases . .
inferring position specific gap ~ pi=a, § =i fw gt R e ] SRR B

Metallopeptidases
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WPO0IGSTBTY 15 Lnmicronm G casan Foury

penalties. It tends to align @@z @ wotigamis o B
sequences as  conserved EEEE JinEigRc..
regions and can easily span
across large insert regions
without fragmenting the rest
of the alignment, as the figure 35‘273‘.'3:23‘3?2-: 4 e
on the right illustrates. Unlike !
most MSA programs, GISMO
will not align unrelated (e.g., =
randomly generated)
sequences (see below).

An HMM is an abstract statistical
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model that probabilistically generates
strings of characters in an alphabet, which 3,101 @ s
for protein sequences consists of the 20 / N

amino acid residues. The architecture of a B @ y (g

GISMO HMM is shown on the right. It

consists of 5 types of states: a start (S) and 1- 5,0 L
an end (E) state, and delete (D), insert (I) ° — - B JE’:» o M,

and match (M) states; and of transition o

arrows between states. Transition arrows have assigned probabilities such that the sum of the probabilities
out of each state sum to 1. An HMM generates a sequence by stochastically following a path through the
HMM: Beginning in the S state, subsequent states are sampled based on the transition probabilities; upon
transition into an insertion (I) or a match (M) state, the HMM emits a character in the alphabet (i.e., an
amino acid residue) based on the emission probabilities assigned to that state. This process is terminated
when the end state (E) is reached with the output being the sequence of residues emitted.

There are three algorithmic operations associated with such an HMM: (1) An arbitrary sequence is
scored against an HMM as the probability of the HMM having generated that sequence. This requires
summing probabilities over all possible paths through the HMM that would have generated that sequence;
this is done using the forward algorithm, which is similar to the Smith-Waterman (SW) algorithm[11].
(2) A given sequence is optimally aligned against an HMM by finding the path through the HMM that is
most likely to have generated that sequence. This is done using the Viterbi algorithm, which is also similar
to the SW algorithm. (3) No tractable exact algorithm is known to find the HMM transition and emission
probabilities most likely to have generated a given set of input sequences—in other words, to derive the
maximum likelihood estimate of the parameters of the HMM given a dataset of sequences. However, one
can use Markov chain Monte Carlo sampling to obtain a near optimal solution.

GISMO uses MCMC sampling in this way to search for an optimal HMM and an associated optimal
MSA by probabilistically sampling HMM architectures and corresponding parameter settings based on a
given set of input sequences. This process begins by arbitrarily aligning the sequences and then using this
alignment to parameterize an initial HMM, termed M. An HMM is parameterized by estimating transition
and emission probabilities based on the observed residue frequencies in the MSA, where each aligned
column contains those residues emitted upon transition into a corresponding match (M) state or, for gaps,
to transitions into a corresponding delete (D) state and where each insertion corresponds to transitions into
a corresponding insert (I) state. Next, GISMO iteratively samples an MSA based on the HMM and then re-
parameterizes the evolving HMM based on the sampled MSA. Specifically, in the i iteration GISMO
computes the probability of each of n, alternative (slightly different) HMMs having generated the input
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sequence data D (i.e., it computes P(M;;| D) for 0 <j <n,); it then samples one M;; (and a corresponding
MSA) proportional to these probabilities. Finally, it stops upon convergence on a high probability (ideally,
nearly optimal) HMM (and MSA).

On average, GISMO aligned 408 benchmark sequence sets more accurately than did six of the most
popular MSA programs (panel A in Fig. 3.1), especially for the most difficult to align sequence sets. Unlike
these other programs, which are deterministic and thus return the same MSA for each run, GISMO is
stochastic (panel B). However, the program-to-program variability (panel C) is greater than the run-to-run
variation for GISMO (panel B).
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Figure 3.1. Alignment quality among various MSA programs based on their SP-scores, which vary from 0 (no correctly
aligned sequence pairs) to 1 (all pairs aligned correctly). A. The sorted (lowest to highest) SP-scores obtained by six MSA
programs. B. Run-to-run variability in SP-scores over six GISMO runs. Test set data points are sorted along the x-axis by the
SP-score obtained for each set on the first run (red data points) out of six. C. SP-scores for the six programs analyzed, sorted
by the GISMO score on each test set. GISMO SP-scores (for a single run) are shown in red. Each red data point and the five
black data points (one point for each program) plotted in the same column correspond to the same test sequence set.

Version 2 of GISMO can run a user-specified number of threads in parallel, which allows for a more
thorough exploration of the posterior probability distribution over possible HMMs. Rather than speeding
up the program, this is designed to improve MSA accuracy by improving its ability to find a more nearly
optimal MSA. Appendix 1 provides mathematical details regarding GISMO. The GAMBIT program will
attempt to further improve a GISMO-generated MSA by continuing to apply MCMC sampling, which can
also provide a measure of alignment uncertainty. The eCOMPASS (evaluative Comparison of Multiple
Protein Alignments by Statistical Score) program [12] evaluates the relative quality of two alignments of
the same sequences based on direct coupling analysis (DCA), which is described below.

Example. An early MCMC sampler implemented in conjunction with a database search procedure
identified very subtly conserved motifs within sequences that included lysophospholipid acyltransferases.
The MSA obtained in this way is shown here:

start motif A motif B motif C motif D motif E end description
62 PLITVSHHQSQIDDPHLWGIL (16 AADICFTKELHSHFFSLGKCVPVCR (49 GDWVHIFPEGKV (8) FKWGIGRLI (19 VLPHSPPY 27 tafazzn (human)
37 PLITVSHHRSNIDDPIMWCIL (17) AHNICFTKQFHTTMFSLGROVPCVR (19 NKWVHIFPEGKV (9) FEKWGIGRLV (19 VWPTQPPY 174 ZK3092 (wormi
70 GLMTVMNR{SHMUDDPLVWATL (16 AHNICFQNEKFLANFFSLGQVLSTER (9 PSWVHVYPEGFV (13) FKWGITRMI (400 EINVTIGD 262 (P96395 (veast
213 PALIIMNHRTRLDWLFFWHAL (14 LKGMLKYVP GAGFAM)AASYIFLDR (27) KYQLLLFPEGTD (26) PRVIGFVHI (13 IYDVSIGF (agpat (wormy
& HALIISHHRSDIDWLIGWILA (13 MKKSSKFLPVIGHSMWFAEYLFLER @7 PFWLALFVEGTR (26) PRTKGFVSA (10 I¥DTTVIV 6 (agpat (maize)
102 RAIYISHNHASPIDAFFUMWLA () AKKEVIWYPLLGQLYTLAHHIRIDR (20 NLSLIMFPEGTR (35) WRKGTFRVR (0) PVPITVKY 6 agpat (vascubrpbng

75 PYIMIANHQSTLDIFMLGRIF () AKKSLKYVPFLGWFMALSGTYFLDR (20 KRALWVFPEGTR (10) FKKGAFHLA (7)) LPPQAIEY agpat (yeast)

66 HATYTANHQHHYDMVTASNIV () GKKSLLWIPFFGQLYWLTGHLLIDR (20 RISIWMFPEGTR (8) FKTGAFHAA (6) IIPVCVST 181 agpat(E.col)

# PVLVVANHKSHLDPLVLIKAF (1) VAKIELKD TVLFKLMKLIDCVFIDR (19 GTAIAVEAEGTR (8) FKPGALKVA (6 ILPVSIVG agpat (M. genitalium)
71 GVLVAANHVSWLDIFAMSAVY () AKQEIKSWPVLGKMGQHAGTVFINR (19 GONVSFFPEART (10) FKAALFQSA (6) VLAVALRY 185  agpat (N. meningitidisy
223 PLLFLPVHRSHIDYLLLTFIL (1) ASGHNLNIPVFSTLIHKLGGFFIRR (2§ QQFLEIFLEGTR (0) SRSGKISCA (2)) VIPVGISY (gpat (mouse)

160 PMVYLPLHRSHLDYLLITWCH (1) ASGDNLHLSGLGWLLRATGAFFIRR (2 DMPIEFFLEGTR (8) PKNGLISHV (I3 LVPVSYTY (gpat (wom)

220 RIILMSHHOSEADPAIIAILL (33 SKKHMLDNPELVDMKRKANTRSRKE (3 SQITWIAPSBGR (9) WAPAPFDSS (1 IYPLAILC PkB (PEA)

Among the sequences found was tafazzin, which is associated with Barth syndrome, an inherited
cardiomypathic disorder in children. This predicted that Barth syndrome was due to an acyltransferase
deficiency, which then was clinically confirmed (see J Pediatr. 2002. 141(5): 729-733), and which later led
to potential treatments for this disease (see J Lipid Res. 2003. 44(3): 560-566), including the first-ever
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approved treatment for Barth syndrome: Elamipretide, a small mitochondrially-targeted tetrapeptide that
appears to reduce the production of toxic reactive oxygen species, thereby stabilizing cardiolipin. Abnormal
cardiolipin is a specific diagnostic marker of cardiomyopathies caused by Barth syndrome mutations
leading to alterations in the fatty acid composition of several phospholipids. The latest version of GISMO
creates a much better alignment of these proteins, as illustrated here:
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Statistical significance. An important feature of GISMO, which most other MSA programs lack, is that it
will not align sequences lacking statistically significant sequence similarity—though it will align very
subtly conserved regions that might appear to lack significant similarity. Such subtle similarity is important
for detecting distant relationships that reflect functional and/or mechanistic properties. A MAFFT
alignment of randomly shuffled (PH domain) sequences, which someone might misinterpret as being
biologically relevant, but that GISMO will not align, is shown here:

random! 40 K (18) SK.LSGHEI( 1)EMaMARK....PIV( 9)SSLDANLMNSR (28)DGFK.LR( 5)VRDY (18) SQSAEA (10) 167
random2 26 Q(32) DM.YGLGIA( 14)QL.MGQV (26) TYK. .. .CEGEQTDLEKE (58) LQTViMM. . QA*( 1)AGNRCK( 8) 205
random3 40 Q(45)TLePMI.AKF( 5) QD .FQRI (44) KLV( 7)WIKVWVLIDYS (22)ADGF.HL SRAR (20)<:VRHE'N(13) 231

randomd 21 .FIRI( 2)GLS....ELDDLQSSSQR( 6)KSNE.AT. YSA-. 63
random5 1 -.. .FPDH( 4)DMV( 2)DRAGATNMPQS ( 7)DEVL.MR (10) 61
randomé 33 L....SE. EVTHAX( .YEQE ( 6)XLS( 1)REYEEVEIRTE (13)EAGLEXS. .,g«ys(za)mzsgs(zo) 135
random? 28 G( 7) SHeTKRA-K ( FQTF(IS)WLT(17)K LIK \LEPDSK(All)HPAPa\L( 4)] \'SGN(ZA)AHQSAH(ZO) 189
random8 12 S.. NGGRVMI . - . .--QDSALEDPN( 1)RVDE.VE....A- .SGPPLL( 3) 51
random9 13 M. ... HNwYADQSL. . CWSKL . . KVDPNQSAPEG. VL'I‘( 1)TSGAVD( 2) 57
randomi0 3 cC .DT.-GEETQ( .WPSI ( 63
random11 5 .WQQY ( 73
random12 R .¥VTY ( 9%
randomi3 1 -... . -TtPGGEPS( Q. WSQP ( 9)GLA(12)TF NYDAACEE ( 6) KMAL . SE !
random14 18 E(5 ) QDLIGSAHL ( .LEGE (29) VAS ( i EGD(ZS)QKMASE(ZS) 279
random15 1 -....--.—=--——.. ... EF.WLIF( 7)EVT( . KM=~ 48

ELRN( A)STIG——.
LIE- N(n)ERMSST(M) 101

random16 7 ( 3)HAvKKENTG( 37) IR.WKXV....-——.

random1?7 21 G l)MK.FDGL(lB)WST(

random18 1 -....-=.-====—, . ... --.WEIA( 2)FTN( 1) TKSASGLVSNL( 1)RLAA.IA

random19 22 D ( 2)EIlKGSRIV( 38) GQ.¥SED (27) QLF. . . . YYG- --AVKHP (31) ERKESKT. .

random20 50 x (31)DR GGKVL( .FEST (23) TVC (15) DYWXHDQLDSR (32) TAANKLW( 5)GRIG( 9)LIADER(10) 220
. NEMF

6) RQLIWDQLQFA ( 4) STAQLFL

random21 .-VKI....-VS( 1)SCGDSTNVSQF( 2)KLYA.PR.. <( 5)ETEQLD( 3) 43
random22 - FREV (43) TTL (30) VKGNKVDFSEE (46) VYLDhCT ( 5)J<LV (22) RAFVCK ( 4) 272
random23 -~ .WAMN ( 6)EER....GLKCMSDPSER (12) IWKK.QT. .8 47

random24 11 E(Sl)RR YGAASA( 12)AK. FKDI(ZD)GAF(IS)GEGE xHKDNp(lS)HAVNng( X N —LANH’(ll) 154
random25 1.;5 K( 9)MLfAAGTLP( 12)HS YGQH(I'I)GLF . F == L3Q-F....SYNFEK( 6) 102

random26 .-X.MDTERC. . .MD .NEKQ ( 6)NSEKIL. 41
random27 1 wuc( "9)cvc( 1) DEAERKRVSEN( 7)WECV.ID....EQKS( 5)NRD---. 55
random28 1 ; LS}\I(IZ)LCL( 6) GKSSGGVVWRP. . . .PQ--.-—....----....--DYAL. 44
random29 5 QQgRGKVAM( 3) RK. WWV- - - ...----QALLSKA( 1)YSHA.SK....ELEQ( 5)ASVPMG( 3) 54
random30 1 s .QTAS (' 9) GLV( 3) PGANTDSSDKE (32)HTSA.AE .YHD-.... . 78
random31 1 - CET. —DNTR( .VDYD. ...CNS....SEDAYTIFAGP ( 3)KWA( CQ ( 5) PKQGLK ( a) 58
random32 33 K (19) RKXLREG--. . ... - —KIQ(ZZ)QIS(lQ)N‘ELC ILGDSR(SS)SAQDWSD( 6 fous (21)KGASEQ(20) 219
random33 7 D....ETAdIGYHVL( 14)AA.WAIV ~==--GTLVGRT ( 1) GKVR.FA.. ~TEP 56
random34 5 G( 2)ET.C-SPTT( GPAYQPLTEK. . . .F-—-.-E. 66
random35 1 - —_—— . —F‘D'ILISDG( 3)NV‘1‘K IK . 29
random36 | LLGGGS --SGLLGKL ( 1) SVIL.IC. .. .ALST....-SDPIS. 33

random37 30 Q (25) DEeLERV-G ( 1)QI KSYY(IB)DVI(IE)SQLTGEEQDGE(IS)NMAKgTR( 4) EDAK (56)YRQDQQ(12) 215
random38 13 (17)SR.1='VTGSC( 1) QY.LQSI (68)SLV(lO)QFSE}QCDVN‘NK(lQ)YE‘LDfLW( 5)GAIT (40) GQQPAK (10) 221
random39 Smm R .——-AQKKVRSA ( 1)ASIG.VK....ZEGR( 5)GSDPSF.... 30
randomd40 3 H.. . QTLLCGTSA( 5)RN.KGSG(19) TAC( 2)ESGNEDAFSKS (11) SLLA.VE. .. .LQSN( 2)NKSDLG( 1) 88
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4. Protein sequence divergence and functional specificity

Proteins sharing a common structural core and, in the case of many enzymes, catalytic residues a well,
typically have diverged into subgroups involve in distinct cellular functions. In some cases, these functions
are very different, as is illustrated in Fig. 4.1 for soluble chloroperoxidase (CPO) and integral membrane
associated type 2 phosphatidic acid phosphatase (PAP2). CPO, which catalyzes the production of
hypochlorous acid (i.e., bleach), is produced by a parasitic fungus to break down the host cell wall.
Membrane-associated phosphatidic acid phosphatase (or PAP), on the other hand, is involved in lipid
metabolism and signal transduction and catalyzes the dephosphorylation of phosphatidic acid to produce
diacylglycerol and orthophosphate. These enzymes nevertheless share subtle sequence similarity (Fig.
4.1A) and a common catalytic core (Fig. 4.1B,C). The CPO reaction is facilitated by a vanadate ion bound
to the active site. Because vanadate is a transition state analog of phosphate, this structural relationship
suggests a catalytic mechanism for PAP2 (see Fig. 4.1D). It also raises the question: Which divergent
residues within CPO and PAP2 are responsible for their distinct functions? More generally, which divergent
residues among members of a given protein superfamily are responsible for functional specificity?

A _ Fig. 4.1. Structural relationship between
EFWRP(37) AYPSGHATFGGAVFQUVRRY (63) LMFENAISRIFLGVHWRFDAAAARDILIP 510 chioroperoxidase . .
RFARP(52) SYPSGHATQNGAFATVLKAL () LAVNVAFGRQMLGIHYRFDGIQGLLLGET 182 bromoperoidase soluble  haloperoxidases and  integral
MRTRP(21) SYPSGHTAYGTLLALVLSEA (10) RGWEFGQSRVICGAHWQSDVDAGRYVGAV 211  acid phosphatase membrane phosphatases {ref}. A.
KRVRP(21) SYPSGHASFGWAVALILAEI (10) RGYEFGESRVICGAHWQSDVEAGRLMGAS 212 ATP diphosphohydrolase HOmOlOgOuS regions Wlthln haloperoxidases
and phosphatidic acid phosphatases PAPs with
catalytic residues highlighted in red. The
alignment was obtained using Gibbs sampling.
B. The vanadium binding domain of
chloroperoxidase (CPO) (pdb: IVNC). The
vanadate ion (orange), which is a transition
state analog of phosphate, is bound from below
by His-496 and from above by azide (not

GSLRP(37) SFYSGHSSFSITYCMLFVALY (23) FSIYVGLSRVSDYKHHWSDVIVGLIQGRA 207 PAP2

PAP2

shown).. The backbone is shaded red
(model) proportional to the degree of sequence
g : conservation. C. Model of the active site of
phosphatidic acid > 4 mouse PAP2 based on the CPO structure
H,O, + Cl + H* - H,0 + HOCI diacylglycerol + phosphate X .. :
Coloring scheme: vanadate and transition state
D H . y M phosphate, orange; residue sidechains
—N | I interacting with vanadate or phosphate, cyan;
| OxH N
%\/HUNW) I e \‘) Predicted {PMID: 7795533} trans-membrane
[e) 4 Np_ . . . .
SP=0 i o7 TS 2 e regions in PAP2, blue; diacylglycerol moiety
O (H300) N of phosphatidic acid, light gray. D. Proposed
T H.O . .
\Q_C:\NQ Sl &FN.@H/\ catalytic mechanism for PAP2-related
b TO\ % i \O\C 0 phosphatases. Residue positions in parentheses
ey CI (Ha%8) [ indicate corresponding active site residues
(QSSO%; ‘DA:O%, within CPO.
Chora T F LVEVERry WV BT rcnarvaomecarnemy | Fig. 4.2. Ran family sequence alignment.
Nematoda 9 FKLVLV] T VKL LT, T ol FGGLL .
Rlaghelmintte 16 VLY SR e T Ecch The leftmost column specifies each
Moll 12 F i 5 .
gé’m'ﬁiﬁimaza 1 Brnae SR T foon sequence’s phylum; these are colored by
R I o Toa i o eukaryotic ‘kingdoms’, as follows:
Basidiomycota 13 FELVLV] T, VS T el FGGL .
$ ravivacer: Bev fun s FocL metazoans, red; fungi, dark yellow;
FHLVLV T (EV T &yE: FGGL
2 .
13 ELILVERGOVE gyt (g e EGol plants, green; protozoans, cyan.
18 FELILV] W V! (L T &) o FGGL
10 LVLV] W v (LT FGGL
1 FKLVLV] i, V! (LT &2 FGGL
12 FRLVLV V. EV GEI] L
position 20 30 .

Regarding this second question, consider Ran GTPase, which is essential for the translocation of RNA
and proteins through the nuclear pore complex and that shares a catalytic core with other P-loop GTPase.
A sequence alignment of Ran proteins reveals a very high degree of conservation across diverse eukaryotic
phyla and ‘kingdoms’ (Fig. 4.2). Most of the conserved residues are not directly involved in catalysis and
differ from the residues conserved in other P-loop GTPases. At some conserved positions, even minor side-
chain modifications—such as substitution of leucine for isoleucine, which merely involves rearrangement
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of a methyl group—appear to be consistently eliminated by natural selection. This suggests that such
residues establish functionally important interactions with precise geometric and/or chemical constraints
important for functional specificity. ; :
Likewise, within an alignment of all P-loop GTPases, there ‘ )
are residues conserved within each protein family as well as : ; :
subgroup conserved residues that span multiple families; this is -
illustrated schematically in the figure on the right, where similarly
colored horizontal bars correspond to families, vertical bars < =
correspond to conserved patterns, and brackets denote subgroups - 1t
of families sharing conserved residue that serve as candidate
functional specificity determinants. There are dozens of P-loop
GTPase families that can be aligned and analyzed in this way. \_
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5. Sequence detection & alignment using a curated hierarchical MSA

MAPGAPS. Even the best MSA methods will fail to
correctly align some protein sequences. Various Ras-like
GTPases, for example, conserve an Arg-Glu salt bridge
where the arginine is sometimes preceded by a deletion or
an insertion and is sometimes followed by a 15-residue
insertion. Hence, aligning this arginine correctly is
impossible  without manual curation, which is

prohibitively time consuming for all but the smallest ., con ™ .., ' b
. . - t\.‘:v ME R VVTADQGEALA GI F Ebb
MSAs. The MAPGAPS (Multiply-Aligned Profiles for ~[Z20AR8%A ez vysss croia - cr eef s
i i DSCA Rab6  keorc: IR, .. *yrYSEGMQIAQ-YNC WE-Grs
Global Allgnment of Protein Sequences) program [13] SekaAvoes ToRed..-LR. .. -BErENSCUGERQNTIT. Mo
addresses this problem by detecting and aligning database e e e P e e §E:
sequences using as the query a curated hierarchical MSA  [2J%} Goel? 2 = R e N L RO \‘imgg::
(hiMSA). An hiMSA consists of a set of subgroup MSAs o5, 5o xa = s ono wa sver ¥ Bre
for a specific protein superfamily that are multiply aligned —IC1YARRI__ KCiLEL. . ER.. VVOIEQCOULA QW 11 FLESS
. to each - " ’

superfamily template . .

ity A other using template MSAs—one for the superfamily

onsersus _— e and one for each family, subfamily, etc. in the hierarchy.

°°"?et'¥s")s : == After converting the hiMSA into a set of multiply

Family B template aligned profiles, MAPGAPS uses these both to detect

. ' S ' and globally align database sequences related to the

sus | ' superfamily. It relies on Karlin—Altschul statistics as a

subfamily B2

consensus | — I measure of significance and on PSI-BLAST (and other)
e heuristics for speed.

The NCBI maintains a conserved domain database (CDD) [14] of manually curated hiMSAs for various
protein superfamilies that can be downloaded as query hiMSAs for MAPGAPS [15] after conversion into
MAPGAPS-readable format using the CDD2MGS program. We typically perform a MAPGAPS search on
the NCBI fasta-formated non-redundant (nr) [16] and pdbaa databases. To speed up a MAPGAPS search
and alignment, it is best to split up the database sequences into smaller sets (of <250,000 sequences) using
our fasplit program and then run a grid node MAPGAPS search on each set separately. MAPGAPS
generated MSAs can be concatenated into a single file and then merged into one MSA using TweakCMA
with the -m option. Note that our programs create and utilize MSAs in cma-format, which is more compact
than most other MSA formats and thereby facilities the creation of very large MSAs. The ConvertMSA
program can be used to convert MSAs from cma to fasta format and vice versa. Often cma-formatted MSAs
require some additional processing prior to being used as input by our programs, for which TweakCMA
can again be used. For example, it is recommended that sequence redundancy be reduced to between 90-
98% sequence identity. The following table describes some other commonly used TweakCMA options:

Option Description

-cdhit=<int> heuristically remove all but one sequence among those sharing = <int> percent identity using cd-hit (range: 40-100)
-Csq output a cma formatted consensus sequence corresponding to the input MSA

-hsw create a *.hsw file (as required by various programs) that down weights aligned sequences for redundancy

-m merge concatenated MSAs (all with the same number of columns) into a single MSA

-mincol=<real> output only those aligned segs with >= <real> fraction of column matches

-phyla show the phyla represented in the MSA

-pdb output a cma file with pdb sequences only

-rpdb remove pdb sequences from the input alignment

-rm=<int> randomly remove all but <int> segs from an alignment; this can speed up analyses by pruning down a large MSA
-U<int> remove all but one aligned sequence among those sharing = <int> percent identity using an exhaustive algorithm
-U remove identical sequences from a cma file (keeping first occurrences)

The AddPhylum program can be used to annotate nr input sequences with taxids, and with class,
phylum and kingdom designations—information that can be used by our other programs; this requires
downloading the NCBI taxdump.tar.gz, and prot.acession2taxid.gz files [17] and, for the pdbaa sequences,
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the pdb.accession2taxid file. Taxonomic information is added after each sequence identifier (i.e., <seq_id>)
using the syntax: <seq_id> {|x(#)|p;c(k)>} where x is the starting residue position for N-terminal truncated
sequences; f is the sequence’s NCBI taxonomy identifier as an unsigned integer; p and c¢ are the names of
the phylum and class, respectively; and k € {4, B,V, M, F,E} indicates the kingdom, where A=Archaea,
B=bacteria, V'=plants, M=metazoa, F=fungi, and E=protozoa.

LAPIS. The (preliminary) LAPIS (Lots of Accurately-aligned Proteins Initiated from Scratch) program
takes as input a fasta formatted set of unaligned protein sequences belonging to a specific superfamily and
outputs a large MSA. It applies the following steps: (1) Using cd-hit, remove redundant sequences from the
input set and select a relatively small set of representative sequences. (2) Run GISMO on the representative
set to obtain a starting MSA. (3) Create a hiMSA of depth 1 with each sequence serving as a subgroup
‘MSA’. (4) Run MAPGAPS using the initial hiMSA as the query and the input sequence set as the database
to create expanded MSAs for each subgroup. And (5) Run MAPGAPS again using the expanded hiMSA
as the query to generate the output MSA. Thus, LAPIS provides a way to create very large, relatively
accurate MSAs for those superfamilies lacking a manually curated hiMSA. By running the following BPPS
program on this MSA, one can obtain a starting, representative hiMSA for manual curation. Note, however,
that LAPIS is still under development and thus is not quite ready for public release.
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6. Characterizing protein functional determinants (BPPS)

After obtaining a large, reliably accurate MSA (typically consisting of at least tens of thousands of
sequences), the next step is to characterize statistically significant sequence constraints. Bayesian
Partitioning with Pattern Selection (BPPS) [18,19] does this by partitioning an MSA into a hierarchical
MSA (hiMSA)(Fig. 6.1A) where hierarchically-arranged subgroups are each defined by ‘pattern residues’
that best distinguish the subgroup’s aligned sequences from sequences in other, closely related subgroups
that generally lack that pattern (Fig. 6.1B). Presumably, such residues play key roles in subgroup-specific
functions. Using MCMC sampling [20] with simulated annealing [21], the BPPS sampler [22,23] searches
for the mode of the posterior probability distribution over possible hierarchies and, as an aid to biological
interpretation, visualizes pattern residues within representative sequences and structures (as illustrated in
Fig. 6.2 below). Among these are residues with well-characterized functions, which is not our primary
focus. Instead, our focus is on pattern residues of unknown functional relevance—structural interactions
among which may suggest hypotheses regarding underlying mechanisms [24-34].
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Figure 6.1. Basic features of a protein hiMSA. A. Schematic diagram of that part of an hiMSA corresponding to the lineage from
the root node to leaf node 9. There is one such diagram for each leaf node in the hierarchy. Horizontal lines represent aligned
sequences and are color-coded by level in the hierarchy. Thin light gray horizontal lines represent non-homologous and deleted
regions. Vertical lines represent the residue pattern positions upon which the hierarchy is based and are similarly color-coded by
levels. On either side are the subtrees for each level of the hierarchy. The colored, gray, and white nodes in each tree correspond,
respectively, to their foreground, background, and non-participating partitions (as explained in panel B). The background for the
entire superfamily (not shown) is based on standard amino acid frequencies. B. Schematic of a BPPS “contrast alignment”
corresponding to the (green) subfamily tree rooted at node 8 in panel A. There is one such contrast alignment for each node in a
hierarchy. Sequences assigned to node 8’s subtree (green nodes of upper right tree in panel A) constitute the ‘foreground’ partition,
those assigned to the rest of node 8’s parent subtree (dark gray nodes in panel A) constitute the ‘background’ partition, and the
remaining sequences constitute an omitted, non-participating partition. Horizontal bars represent sequences; these are colored as
are the corresponding nodes of the ‘subfamily’ tree in panel A. Green vertical bars represent foreground pattern residues (shown
below each bar); these diverge from (or contrast with) the background residues at those positions (white vertical bars). Red vertical
bars heights quantify the degree of divergence.

BPPS runs in various modes; the example shown in Fig. 6.2 corresponding to mode ‘1°. To obtain the
sort of hiMSA shown schematically in Fig. 6.1, the output from mode ‘1’ must be used as the input to
BPPS modes ‘2’ and ‘3’, which expand each of the subgroup alignments to include regions corresponding
to insertions relative to the common core defined for the parent node. The following table describes these
and other BPPS modes:

Mode  Description

Initial hierarchical partitioning of MSA into subgroups

Create a hiMSA as in Fig. 6.1 using a mode 1 checkpoint file

Create contrast alignments for a specified node’s lineage

Run modes 1-3 using default options with optional mapping of pattern residues to structures
Perform a query-centric run in mode 1

Evaluate the consistency between two BPPS-generated hiMSAs

Run BPPS with a user curated hyperpartition (which need not correspond to a tree) and seed MSAs

ITIMOX>>wnN =
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BPPS mode ‘1’ is used when starting attach move nsertidelete
from an input MSA. In this mode, BPPS ._>z @:} 0/I\

explores the ‘space’ of domain

hierarchies by attaching, moving, ® o
inserting, and  deleting  nodes & ?} :\O
corresponding to functionally divergent

subgroups. Each such hierarchy corresponds to a tree, but for reasons explained in the next section, are
represented as a hyperpartition (hpt), which (for a tree) consists of an (n + 1) X n matrix with rows
corresponding to nodes in the tree plus an additional node corresponding to a ‘rejected’ category for
sequences lacking superfamily features and with columns corresponding to contrast alignments (see Fig.
6.1B). To the right is shown a hpt for globins, where foreground and background partitions are indicated
by '+’ and ‘=’ symbols, respectively,  ——cccccccoo—— myperpartition: ======mmmmme—c

00
v

: _Category_
and omitted sequence sets are left blank. =~ $70°99%. o o o o 0101110 13 14

At the end of each row, the sequence set 1+ - - - - - - 1.setl (290)*
d . . f h d . . h h 2: + + - - - - 2.Setl4 (77)
esignation for each node 1s given with the 3. 0+ - o4+ - _ _ - - 3.set13 (59)
number of sequences assigned to that set 4: 4 - -4 - - - - - - - 4.set6 (317)*
. . 5. + - - + + - - - - - - _5.setl2 (75)
in parentheses. An asterisk at the end of a 6: + - - + - + - - - - - T6.set1l (51)
: : : : _ 7: + - - + - - + - - - - _7.Setl0 (112)
line 1qd1cates an internal (non lc?af) node. . 1 - T .- L 8lsets (337
The lines below the hpt matrix further 9: + - - - + o+ - - - - _9.set9 (203)
: : . 10: + - - - + - + - - _10.set8 (98)
annotate columns. Each line lists: the 1. 4+ - - _ + - - - 1T.setd (514)*
numbers of foreground and background 12: + - - - - + 4+ - - _12.Set7 (230)
) .. 13: + - - - - - + - 13.Set3 (587)

sequences; the associated log-probability 14: & - - - - - -+ 14.Set2 (1442)

ratio (LPR) in nats, in nats per sequence Rejected (609)

(nps) and in nats per weighted sequence
(npws); and the number of pattern
positions (i.e., columns of the MSA) for
the contrast alignment. The bottom line

1: 4392 2277 seqs (8223.4; 1.9 nps; 6.4 npws) (19 cols)
2: 77 4315 segs (809.021; 10 5 nps; 28.1 npws) (25 cols)
3: 59 4333 segs (1191.19; 20.2 nps; 49.5 npws) (25 cols)
4: 555 3837 seqgs (2431.73; 4.4 nps; 14.8 npws) (23 cols)
5: 75 480 seqgs (125.919; 1.7 nps; 8.6 npws) (19 cols)
6: 51 504 segs (226.983; 4.5 nps; 13.7 npws) (18 cols)
: 3 7: 112 443 seqgs (323.13; 2.9 nps; 10.3 npws) (20 cols)
glves .ﬂle tOtal IJPI{’ ﬂle Slnlujated' 8: 638 3754 seqs (3443.37; 5.4 nps; 16.2 npws) (25 cols)
annealing pseudo-temperature, and the 9: 203 435 seqs (567.624; 2.8 nps; 10.2 npws) (24 cols)
. £ s 3 10: 98 540 segs (570.063; 5.8 nps; 18.8 npws) (25 cols)
fraction of ‘failed nodes’—that is, those 11 744 3648 seqs (4655.15; 6.3 nps; 25.9 npws) (25 cols)

nodes that lack statistical sigificance.  12: 230 514 seqs (661.147; 2.9 nps; 14.0 npws) (25 cols)
13: 587 3805 seqgs (4448.66; 7.6 nps; 29.5 npws) (25 cols)

Common user-modifiable BPPS 14: 1442 2950 seqs (4569.38; 3.2 nps; 11.0 npws) (25 cols)
parameters are the following: ====== Total LPR = 30579.3 (300.0 K) (0/14 failed) ======

Option Description
-heatmap generate heatmaps showing, for each pattern, the degree of conservation among hierarchy nodes
-ichk save intermediate checkpoint files during the run
-maxcol=<int> set the maximum number of pattern positions per node to <int> (default: 25)
-minsize=<int> set the minimum set size to <int> sequences (default: 50)
-minnats=<real> set the minimum required nats per weighted sequence to <real> (default: 5.0)
-maxdepth=<int> set the maximum tree depth to <int> (default: 2)
-run=P Create additional output files (requires a checkpoint file)
-seed=<int> Set the seed for the random number generator to <int>
The -heatmap option reveals how strongly the pattern residues are Globin column 3 contrast alignment

conserved in the foreground, background and omitted partitions for each
contrast alignment (see image on the right). It also reveals pattern residues
that are ‘cross conserved’; that is, are also conserved in some of the
background or omitted subgroups. If so, then a user can create a new
hyperpartition (that need not correspond to a tree) that can better model
the patterns of conservation (as discussed in the BPPS-H section below).
This option requires that PyMOL be installed and on your path.
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Example 6.1: Ras-like GTPases. Phosphate-
binding loop (P-loop) GTPases [35] bind to GDP
or GTP via Walker A (G-K-[ST]) residues,
which corresponds to the P-loop, and Walker B

Ras-like GTPases: signaling
Small GTPase (off) pathway

Q O  onoff

(D-x-x-G) residues, the conserved aspartate (D) active switches
of which interacts (indirectly through a water ..., ";;,~ Exchange of GTP
molecule) with the Mg™" ion that coordinates GTP hydrolysis for GDP
with nucleotide phosphate groups. An important

subgroup of IE)-loog GTgPaseI; are RI;s-like ‘ /7/\@{\@33 o

GTPases, which includes Ras, Rab, Rho/Rac, J\' A Small GTPase (ON) =

Ran, Arf, and Arf-like (Arl) GTPases and o \/\‘: %

//@ Biochemical cycle of

I\ a GTPase switch ;
_Switch I The on-off state is it
communicated to downstream

pathway components via
binding to effector proteins

subunits of heterotrimeric G proteins. Ras-like
GTPases [36] function as on-off switches within
eukaryotic signaling pathways regulating diverse
cellular processes, including vesicle transport,
embryonic development, the sensation of vision, odor, taste and pain, microtubule assembly and cell
division. These GTPases are associated both with guanine nucleotide exchange factors (GEFs), which turn
them on by mediating the exchange of GTP for GDP, and with GTPase activating proteins (GAPs), which
turn them off by stimulating hydrolysis of GTP to GDP. The on- or off-state of Ras-like GTPases is
communicated through conformational changes within their switch I and II regions, which detect the
presence or absence of the y phosphate of bound guanine nucleotide.
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Figure 6.2. BPPS-1 analysis of Ras-like GTPases. A-D. Four contrast alignments highlighting pattern residues that most distinguish
the subgroups to which Rab GTPases belong [33,34]. A. Alignment highlighting all residues that are conserved among the 11
aligned sequences representative of Rab-like GTPases. The bullets above specific columns in the alignment indicate residue
positions that are well conserved within the displayed sequences but that are not distinctive of the subgroups corresponding to the
B, C and D contrast alignments; the heights of the red bars above these positions indicate the degree of conservation relative to
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standard amino acid background frequencies. The leftmost column gives the phylum to which each sequence belongs and is color
coded by kingdom (metazoans, red; protozoans, cyan; fungi, dark yellow; plants, green; bacteria, purple; archaea, blue). B. Contrast
alignment highlighting pattern positions distinctive of P-loop GTPases, with corresponding pattern residues indicated below the
alignment; directly below these, corresponding residue frequencies are given in integer tenths. A ‘7°, for example, indicates that
the corresponding residue occurs in 70-80% of the sequences. Above highlighted columns are red bars quantifying the selective
constraints imposed on pattern positions. The leftmost column gives the protein identifiers for the 11 representative sequences
shown and below this column is given the name of the foreground set and (in parentheses) the total number of sequences assigned
to the foreground. C. Highlighted residues distinguishing Ras-like GTPases from other P-loop GTPases [35]. The format used is
as described for alignment B, except that corresponding information regarding the background sequence set is also provided. D.
Residues distinguishing the Rab-like subfamily from other Ras-like GTPases. E. Structural locations of subgroup-specific residues
within Rab11A bound to a GTP analog [37]. Residues generally conserved in all P-loop GTPases (magenta sidechains) bind to
GTP or to a GTP-bound Mg"" ion. Residues with orange and yellow sidechains correspond to Ras-like family and Rab-like
subfamily GTPases—that is, to pattern residues highlighted in C and D, respectively. Five of the Ras-like residues occur in the
Switch II region that undergoes conformational changes associated with signal transduction. These five Ras-like residues [34]
mutually-interact near the C-terminal end of the switch II region. As described below, the Rab-like subfamily residues (yellow
side-chains) form aromatic CH-m interactions hypothesized to stabilize glycine ‘flexible hinges’ within nucleotide binding loops,
thereby facilitating nucleotide binding and release [33]. In crystal structures these form distinct Rab11A conformations (F, G) [38]
that have been proposed to play a role in the switching mechanism [34] via repositioning of two other Ras-like residues (GIn70 and
Glu71 of Rab11A) involved in GTP hydrolysis [39] and in nucleotide exchange [40,41], respectively.

Shown in Fig. 6.2 are four BPPS-generated contrast alignments %\
corresponding to the lineage for Rab-like subfamily, which consists of ~ "yrooen 3 = (3 —
Rab, Rho and Ran GTPases. The highlighted positions within aligned Rab- Wa%%
like sequences reveal discriminating features distinctive of P-loop facec‘a_idge%

GTPases [34] (Fig. 6.2B), of the Ras-like family [33] (Fig. 6.2C), and of F

the Rab-like subfamily (Fig. 6.2D)—as well as conserved residues that fail
to be distinctive of any of these categories (Fig. 6.2A). Roles for several
of the Ras-like GTPase pattern residues in GTP hydrolysis and nucleotide
exchange were previously proposed. However, BPPS identifies five
additional Ras-like residues: (i) the pattern [RK]-x-[ILV] preceding the P-
loop, (ii) the pattern [WF] directly preceding the Walker B aspartate, and
(ii1) the pattern [YF]-[YF] at the C-terminal end of the switch II region. These residues form an aromatic
pocket around the negative-dipole moment at the end of the switch II helix with the positively charged
pattern residue inserted into the pocket. This helix is oriented in a specific direction away from the GTPase
core but is reoriented upon rearrangement of the charge-dipole pocket (Figs 6.2F,G). The charge-dipole
pocket occurs in both the on and off states and both the charge-dipole pocket and an alternative
configuration occur within the unit cell of a single crystal structure of Rab5a GTPase in the off state. Thus,
the charge-dipole pocket configuration is closely associated, not with the on or off state, but rather with
formation of an outward-oriented helix and, as a result, with restructuring of the switch II N-terminal region,
which plays a critical role both in sensing the on/off state and in mediating GTP hydrolysis and nucleotide
exchange via the two other Ras-like residues GIn70 and Glu71 of Rab11A in Figs 6.2F,G.

An unusual homodimeric Rab27 configuration (Fig. 6.3A), in which the switch I, switch II and inter-
switch regions of each subunit are exchanged and protrude out like an antenna, can explain why the swll-
CT residues are conserved: In this configuration both subunits form charge-dipole pockets (Fig. 6.3B),
which thus are structurally compatible with the outward-directed switch II helices. An association between
the charge-dipole pocket and such switch II restructuring is suggested by comparisons between this unusual,
homodimeric form of GDP-bound Rab27 and monomeric forms of Rab family GTPases. In the
homodimeric form, the switch II region forms a long a helix that is directed away from the structural core
of one subunit and toward the structural core of the other subunit. Presumably this helix lacks the
conformational strain typically imposed on monomeric GTPases—the switch II regions of which need to
bend around and reconnect to the structural core. Hence the charge-dipole pocket is structurally compatible
with formation of this unusual, outward-directed switch II helix. Likewise, within monomeric Ras-like
GTPases formation of a charge-dipole pocket is associated with an outward-directed switch II helix (Fig.
6.3C), whereas its disruption is associated with disruption of this outward-directed helix (Fig. 6.3D)—a
theme that occurs repeatedly in many other Ras-like GTPases {ref}.

charge-dipole

The charge-dipole pocket
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Figure 6.3. Insight from an unusual
homodimeric configuration of Rab27.
A. In the Rab27 homodimer {ref}, the
switch I, switch II and inter-switch
regions of each subunit are exchanged
and protrude out like an antenna. B. In
this configuration both subunits form
a charge-dipole pocket. C. In the
monomeric Rabl1 GTPase formation
of the charge-dipole pocket is also
associated with an outward-directed
switch II helix. D. In the monomeric
Rab5 GTPase disruption of the
charge-dipole pocket is associated
with disruption of the outward-
directed switch II helix. This

Rab27 (dimer) Ploop
Switch I \

/\

e \‘charge-dipole
J  pocket

correlation is seen for various Ras-like
GTPases, including Arf, Arl, Sar, and
Go GTPases {ref}.

Rab5A-GDP

BPPS also identifies (Fig. 6.2D) both two Rab-like pattern
residues (forming a ‘T-A’ motif) previously proposed to perform

a role in nucleotide exchange [39] and four other previously — Acmtc
unidentified Rab-like residues forming a structural component,  glycinein
termed the glycine brace [33]. These include an aromatic residue o
that forms a CH-m interaction with a Ras-like conserved glycine
at the start of the guanine-binding loop (Gly123; see figure on
the right) and a second aromatic residue (nearly always a
tryptophan) that forms CH-m and NH-m interactions with a
conserved glycine at the start of the phosphate-binding P-loop
(Gly18 in the figure). Such aromatic interactions are believed to stabilize the B-strand conformation of
glycine [42]. The two other Rab-like residues (typically an aspartate and a serine or threonine), together
with a conserved buried water molecule, form a network of interactions connecting the two aromatic
residues. These observations suggest that the two glycine residues serve as hinges for the P-loop and for
the guanine-binding loop and that the glycine brace facilitates guanine nucleotide binding and release by
either interacting with or dissociating from these glycine hinges. Consistent with this notion, these aromatic-
glycine interactions are disrupted in the structure of Ran GTPase bound to its exchange factor RCC1
(pdb_id: 1i2m) [43] (not shown).

Trp105 |

3 < g 8
BPPS H-mode. Some superfamilies exhibit complex § e . _E g % o % § E %
patterns of residue constraints that cannot be modeled 3 £ % g é £ s 3 g g2 g
hierarchically (i.e., as a tree). This can occur when some 3% % 3 % § £ g R § : é
proteins in different subtrees inherit certain biochemical 3 % £ 25 £ 25 2 5% § subgrou
properties from a common ancestor that are lost in other + + + + - - - + + RFC-A
members of each subtree due to a relaxation of selective & , + 3 2 = - = & . _ g:::scn
constraints. This is seen, for example, for DNA clamp loader + + + + - + + - -  RFCE
AAA+ domains [18], where subunits B, C and D of * : - : * ;
eukaryotic replication factor C (RFC) share constraints + - - Other AAA+

both with RFC-A (because these all hydrolyze ATP) but not = — — Rendom_

with inactive RFC-E, and with RFC-E (because these all Fyperpattition for characterizing non-hierarchical
. > . . . BPPS constraints imposed on DNA clamp loader

trans-activate ATP hydrolysis) but not with RFC-A (which s A A+ domains.

does not). Moreover, all RFC subunits share constraints both

in common with and distinct from bacterial clamp loader y subunits. For such complex relationships, the
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BPPS H-mode may be used, the output of which is illustrated for RFC subunits in Fig. 6.4; this mode
requires as input a user-defined hyperpartition (edited using the edit hpt program) along with a
representative ‘seed’ alignment for each subgroup. The H-mode can also rerun an analysis using a larger
(updated) MSA of the same superfamily and of the same length as for a previous analysis. The format
required for an input hyperpartition (hpt) is illustrated and described in Fig. 6.5; a corresponding output hpt
is shown in Fig. 6.6.

(a) Active RFCs vs. catalytically impaired RFCs (b) AAA+ ATPases vs. all other proteins
pattern positions: ! . pattern positions
71 YADGVLELNASDDLGID . . VVRNQIKHFAQK GAQQA 126 cB_yeas YADGVLELNASDDRGID . . VVRNQIKHE' ZA00A 126
66 LKDAMLELNASNDHGID..VVRNKIKMFAQQ GAQQA 121 RfcB_human 66 LKDAMLELNASNDRGID..VVRNKIKVMFAQQ 2AQ0A 121
66 AKKAVLELNASDDHGIN..VIRDRIKSFA 2AQ05 121 RfcB_plafa 66 AKKAVLELNASDDRGIN..VIRDRIKSFAKE A00S 121
66 YKEAVLELNASDD:GI VVRNKIKMFAQK GAQOA 121 RfcB_arath 66 YKEAVLELNASDDRGID . . VVRNKIKMFAQK 2AQ0A 121
75 YSNMVLELNASDDLGID . . VVRNQIKDFAST AAQNA 12 RcC_yeast 75 YSNVVLELNASDDRGID . . VVRNQIKDFAST AQNA
83 FGSMVLELNASDDHGID .. IIRGPILSFAST DAQNA 137 RicC | human 83 FGSMVLELNASDDRGID . .IIRGPILSFAST DAQNA 137
75 RSSFVLELNASDDGGIN. .VIRDQIKTFAES AQNA 133 RfcC_plafa 75 RSSFVLELNASDDRGIN..VIRDQIKTFAES AQNA 133
101 YRNMILELNASDDSGID . .VVROQIQDFAST DAQFA 157 RfcC_arath 101 YRNMILELNASDDRGID..VVRQQIQDFAST DAQFA_ 157
KSRILELNASDE;GIS . . IVREKVKNFAR DAQSA 152 RfcD_yeast B8 K LELNASDERGIS . . IVREKVKNFAR DAQSA 152
101 FRLRVLELNASDEGIQ. . VVREKVKNFAQ! ARQAA 162 RfcD_human 101 FRLRVLELNASDERGI VVREKVKNFAQ AQRAA 162
67 ERVLELNASDD;GIN. . VVREKIKAYTR! DAQSA 131 RfcD_plafa 67 ISERVLELNASDDRGIN. .VVREKIK: R DAQSA 131
72 YKSRVLELNASDDSGIN. .VVRTKIKDFAA' DAQNA 134 RfcD_arath 72 YKSRVLELNASDDRGIN . .VVRTKIKDE' DAONA_ 134
370 LGYDILEONASDVISKT . . L. VRKNALDN DRGGV 437 RfcA yeast 370 LGYDILEONASDVRSK LNAGVRKNALDN DRCCV 437
668 LGYSYVELNASDTJSKS. . SLKATVAESLNN DRGGI 734 RfcA_human 668 LGYSYVELNASDTRSKS. .SLKAIVAESLNN DRGCI 734
431 SGYNVIEFNASDE/NKA VE. EMATG DHGGS 491 RfcA_plafa 431 SGYNVIEFNASDERNK: AVEKISEMA' D! s 491
417 LGFQAVEVNASDS);GK! IAKGIGGSNAN DRGGV_488 RfcA_arath 417 LGFQAVEVNASDSRGKANsNIAKGIGGSNAN DRCCV_488
YGSRVLELNASDDZGIN VVRNKIKSFASK DI DAGGA conserved (9789 SNVPFIEINCSDFTGVG EVEERFRELFEK DVQONA
LKEAT E SKS IL OV N RN L SS GRONV KA VVSVDAAELRSID DIRDLIKDAL E EAAS
322679799984976 5662366166 6348 9969 862 66.36 wt_res_fregs (2573): 3 3434874311 3
3
conserved (87): WITYHLELNPSDAGNYD VVQEIIKEMAST | FKVVVLNEADHLTR  DAQHA position . 80 . 90 . 110 . 120
ITC Vv II DLL V Q YRTIII DVEK SK E AS
wt_res_fregs (19): 22458383476638229 547425853723 67546535661943 47935 ) ) A
322 3 221 2 13132 14 112214 2222 32 2 42 (d) Active RFCs adjacent to an ATP site vs. other RFCs
position B 80 . 90 B 110 . 120 .
(c) - .
ﬁ?&‘s&&i—‘iﬁm‘s; o oo L L)
cB_yeas| 71 YADGVLELNASDDRGID . . VVLNQIRHFAQK HKIVILDEADSMTA . GAQQA 126
RfcB_human 6 KDAMLELNASNDRGID . . VV;NKIKMFAQQ HKIIILDEADSMTD. .GAQQA 121
I RfcB_plafa 66 AKKAVLELNASDDRGIN . .VI;DRIKSFAK: HKIIILDEVDSMTT. .AAQQS 121
L - - RfcB_arath 66 YKEAVLELNASDDRGID . . VVI;NKIKMFAQK HKVVILDEADSMTS . . GAQQA 121
pattern positions: L1 L] L cC_yeas| YSNMVLELNASDDRGID . . VV3NQIKDFAST FKLIILDEADAMTN . . AAQNA
7 A ID. VVENOIKHFAQK HKIVILDEADSMT: AQO7 126 RfcC_human 8 SMVLELNASDDRGID . . T ILSFAST KLVILDEADAMTQ. . DAQNA 137
ID. .VVRNKIKMFAQQ HKIIILDEADSMT) AQOA 121 RfcC_plafa 75 RSSFVLELNASDDRGIN. .VI;DQIKTFAE LKLIILDEADHMT AONA 133
IN. . VIRDRIKSFAKI HKI@ILDEVDSMT! 2005 121 RfcC_arath 101 YRNMILELNASDDRGID. .VVSQQIQDFAST VKLVLLDEADAMTK . . DAQFA 157
ID . . VVRNKIKMFAQK HKVVILDEADSMT. 2002 121 RicD_yeast B8 MKSRILELNASDERGIS . . IV EKVKNFAR KIIILDEADSMTA . . DAQSA
1D. . VVRNQIKDFAST LEILDEADAMT! AQ 29 RfcD_human 101 FRLRVLELNASDERGIQ. . VVLEKVKNFAQ KIVILDEADSMTS . .AAQAA 162
ID. . IIRGPILSFAST LVILDEADAMTO . .DAQNA 137 RfcD_plafa 67 ISERVLELNASDDRGIN. .VVSEKIKAYTR KLVVLDEADVMTE . . DAQSA 131
IN..VIRDOIKTFAES LIILDEADHMT AQuA 133 RfcD_arath 72 YKSRVLELNASDDRGIN . . VVI;TKIKDFAAV KIIILDEADSMTE. .DAQONA 134
ID. . VVROOIQDFAST LVLLDEADAMTK . . DAQFA_157 conserved (283): YKSRVLELNASDDRGIN W NKIKSFASK HKIIILDEADSMTS GAQNA
IS. TVREKVKNFA TILDEADSMTA . . DAQSA 152 REM E D TQV N QT v A E A Q
IQ. . VVREKVKNFAQ VILDEADSMT AQAR 162 wt_res_fregs (58): 4422799999985998 799 487198 945899989599 9929
IN. VVREKIKAYT LVVLDEADVMTE . .DAQSA 131 i_5 33 34 3 3
A IN. .VVRTKIKDFAA' IILDEADSMTE . . DAQ: 134 conserved (118) FGYYHIELNPSDAGNKD VIQEIIKEMAQN  FKVLIMDEVDGLSG DAQGA |
ARJSVRSKT . . LLNAGVKNALDN HEVIIMDEVDGMSGG . DRGGV 437 WITDVV ITA VRSY VEDLV V ST KRCVVINDA KMTR ERGAV
ARINTRSKS . . SLKATVAESLNN KHALIMDEVDGMAGneDRGGI 734 wt_res_freqs (34) 23235383658725245 435324641423 34544347583554 65544
ABNERNKA . . AVEKISEMATG KTCIIMDEVDGM DrGGE 491 113112 113 2431 31122 2 12 211243213 1322 13321
ASINSRCK IAKGIGGSNAN KTVLIMDEVDGM: DRGGV_488 position 11 12
IE v; BVGNND - 1 VIQE L.LKEVAQM CVIINEANSLTK . DAQA
NYHLEVEPENAGNSDrvVIQEMLKTVAQS VLLTEVDKLTK . .DAQHA 147 " "
83 OSNYHTELD NKDk i TVQSTIKELCS VEKDA! 20AC 144 (f) ATP-adjacent clamp loader vs. active AAA+ ATPases
90 SSTNHVELT 'QDry IVQE I IKEMAKN LVLNEVDK AQHS 149
YGYRVLELNARINERNID VVKTKVKNEAST I3 CIVLDEADGM'I‘G DRQGV
FKTEHV V' DGSK LON I  ALQS LVIM I AGQ
3214484879827144 44 5 4523 4 58959344 555
conserved (327): RHIDVIEIDAASNTGVD DIREILIENVQY yivﬁlﬁvﬁMLsT OAFNA Eaﬂ?f" positions: L]
KIE EV DVILDKANF FRIFV DC TK GSW G cl ,Keast YADGVLELNASDDRGID . . VVRNQIKHFAQ HIIVILDEADSMTA . .GAQQA 126
wt_res_fregs (48): 22284395878843556 547526352415 68557798677862 26677 RfcB_human 66 LKDAMLELNASNDRGID . .VVRNKIKMFAQ HITIILDEADSMTD. .GAQOA 121
12 1 12122 12 213231111 21331 11 22 111 1 RfcB_plafa 66 AKKAVLELNASDDRGIN. .VIRDRIKSFAK: HIIIILDEVDSMTT. .AAQQS 121
position 80 B 90 110 . 120 R RfcB_arath 66 YKEAVLELNASDDRGID . . VVRNKIKMFAQ: HIVVILDEADSMTS . . GAQQA 121
cC_yeas YSNMVLELNASDDRGID . . VVRNQIKDFAST F;LIILDEADAMIN . . AAQNA
Rfecluman 83 FGSMVLELNASDDRGID IRGPILSFAST FYLVILDEADAMTQ. .DAQNA 137
(e) RFC-A vs. CTF18 + RFC-B RfcC_plafa 75 RSSFVLELNASDDRGIN..VIRDQIKTFAES LIILDEADHMT AQNA 133
RfcC_arath 101 YRNMILELNASDDRGID . .VVRQQIQDFAST LVLLDEADAMTK . . DAQFA 157
RfcD_yeast B8 MKSRILELNASDERGIS . . I VREKVKNFAR Y TIILDEADSMTA . .DAQSA 152
RfeD,Kuman 101 FRLRVLELNASDERGIQ. .VVREKVKNFAQ FYIVILDEADSMTS . .AAQAA 162
. RfcD_plafa 67 ISERVLELNASDDRGIN..VVREKIKAYTRI W LVVLDEADMMTE . . DAQSA 131
attern positions: N RfcD_arath 72 YKSRVLELNASDDRGIN . .VVRTKIKDFA FAIIILDEADSMTE DAQNA 134
RicA yeast 370 LCYDTIECNASDVRSKT LLNAGVANATDN N TIMDEVDGNSGS DREeV 437 RICE_yeast B9 SSPYHLEITPSDNGNND: 1 VIOELLKEVAQ YCVIINEANSLTK .. DAQAA 153
RfcA_human 668 LGY: VEINASDTRSKS SLKAIVAESLNN (17) KiALIMDEVDGUAG <D et 734 RfcE_human 88 ASNYHLEVNPSDAGNSDrvVIOEMLKTVAQS (10) E\VVLLTEVDKLIK. . DAQHA 147
RfcA_plafa 431 SGYNVIEFNASDERN! KTCIIMDEVDGMSSo DKEE: 491 RfcE_plafa 83 OSNYHLELOCFE D VOSIIKELCSY YRIF AEFLSE. .GAQAG 144
RfcA arath 417 LGFQAVEVNASDSR S 1GGSNAN (21) KTVLIMDEVDGMSAY. D [Sev_488 RicE_arath 90 SSTNHVELTPSD VOEIIKEMAK] YEVLVLNEVDKLSR . . EAQHS 149
m mmAsn-ms K LIE GVSEVLNN  KHVLIMDEVDGMSG DRI conserved (58T]: YSSDVLELDAADNRGID 3‘111‘1;5{1;5533; Iy IYILDEAHMMTT ggggA
IASD T I AR v
wt_res._fregs (16): 5923 59999939693 34812422036 6:578899899874 98993 wt_res_freqs (139): 4543“‘3“ 5755 348135435423 §9g37399gg4§§ 7358
Conseved (TT7)—YGYAV. RETD—VV conserved (5167): sDVPE‘ﬁiNcSELTﬁG_EﬁERFGGLFEE—PﬁLFIDEIDKﬁP_DV'NK_
conserve YGEQVLELNASDDRGIE X}Qﬁﬁlg’,&% §§§‘L’$§DE§D§X§§ gﬁg% NA LIRVDMASEVS ASSKLLREVLKK NSVILL VEEMSG ET%SQ
wt_res._fregs (30): 55437494999769434 455247424442 54436599495441 45445 wt_res_freqs (1272): 11134212223231214 112222231321 23355398532311 22321
2 21112 2132 5 323323 3 4211 12311 12122111111 1 111121111211 13223 111111 11111
position . 380 © 390 X 720 T 430 X position - 80 . 90 . 110 . 120

Fig. 6.4. BPPS H-mode generated contrast alignments showing sequence constraints distinctive of various types of replication
factor C (RFC) clamp-loader subunits [44]. The sequences shown span a functionally crucial region of RFC subunits, within which
most of the strongest constraints occur. Each alignment is highlighted to reveal constraints distinguishing a specific subgroup of
RFC subunits from closely related subgroups. The alignments include representative RFC subunits from fungi (budding yeast),
animals (human), protozoans (malaria parasite) and plants (mouse-ear cress). As for Fig. 6.2, the conserved patterns and
corresponding frequencies that are distinctive of the foreground are shown directly below each alignment and, below this, the
conserved patterns distinctive of the background are shown in gray. (a) Constraints most distinguishing active RFC ATPases from
catalytically inactive RFC-E subunits. (b) Constraints most distinguishing active AAA+ ATPases from all other proteins.
(Background pattern residues and frequencies are not shown.) (¢) Constraints most distinguishing eukaryotic and archaeal clamp-
loader RFC subunits from bacterial clamp-loader y subunits. (d) Constraints most distinguishing active RFC ATPases that interact
with the ATP site of an adjacent RFC subunit from other RFC subunits. (e) Constraints most distinguishing the large RFC subunit
(RFC-A) from both an alternative large RFC subunit (CTF18) [45] and the structurally adjacent small RFC subunit (RFC-B). (f)
Constraint most distinguishing all (eukaryotic, archaeal, bacteriophage and bacterial) clamp-loader ATPases interacting with an
adjacent ATP site from other AAA+ ATPases.



Figure 6.5. Input hyperpartition (hpt) illustrated for AAA+
RFC proteins. There are two sections: the first section (labeled
‘HyperParTition”) shows the columns and rows of the hpt. The
first row consists of two types of characters (‘!’, and *’)
corresponding to the columns of the hpt, where ‘!’ and ‘*’
indicates that a contrast alignment for that column should or
should not be printed out. The rows of the hpt correspond to
the subgroups being modeled. Each row consists of a series of
‘+’, ‘-, and ‘o’ characters, which indicate that the subgroup in
that row is assigned to the foreground, background, or omitted
partition for that column’s contrast alignment. This string is
followed by the row number, the name of the subgroup, and a
‘17, ¢, or ‘?” character, where a ‘!’ and ‘.” indicates that the
contrast alignments for which that subgroup is in the
foreground should or should not be printed, respectively; and
where a ‘?” indicates that the row does not correspond to a
specific subgroup (and thus that the contrast alignment should
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HyperParTition:
N ST R R R L]
4---—+--—t-0--—+oo+-++ 1.RfcA!
+----+---0-000-+oo+o++ 2.RECL!
+---—+---0-0-+-000+0+0 3.Ct£18!

----- +0+0+000---0+-++ 4 .Rfcs!
--++++-+o---o+-++ 5.REcBCD!
--—+-++-0-0-o+-++ 6.RECE!
--0+00000-0-0++++ 7.gpdd!

+----0-0+0000000+++0-~- B.Gamma!
©0----0-0+0000000+-+0-0 9.DeltaPrime!
+---+0---00000+000-0-0 10.RuvBlike.
+--+-0---000000000-0-0 11.ClpLon.
+-+--0---000000000-0-0 12.bEBE.
++---0---000000000-0-0 13 .ARA.
+=-=-=--0---000000000-0-C 14 .MiscAARPlus?
~0000000000006000000-0 15.Random=14433.
# I I I I

# 5 10 15 20

Settings:

1.ARAplus -AS5:5 -Ri=0.01 -N=20 -P=K48,G45,G42,GA47,DEL06,NDELO7,ST49, VILMLO3, VILML33..
2.ARA -A2:2 -N=12 -P=AS195,R163,GAl7,P100,D143,6R148,F90,G125,A5110,R87,G194,ND162..
3.bEBP -A2:2 -N=25 -P=R159,ST102,H56,DEQ49,W190,6F86,D145,G88,G87,R143,YF147,N193,YF148..
4.clplon -A2:2 -N=25 -P=G80,DE72,V46,K110,IM73,D114,G193,VILMI0,SN37,NDE207 , VILM205..
5.RuvBlike -A2:2 -N=25 -P=R110,H109,R9,P10,AS170,VIL54,Q19 R169,E124,P121,ST50,G192..

20.gp44_otherRFC -A2:2 -Ri=0.1 -N=25 -P=P192,L18,E125,6YF191,G73, P19, H147,F163,F26..
21.RFC_other -Al:1 -Ri=0.1 -N=25 -P=Ww4,Y8,E70,R77,D193,D109,K7,N72,574 VILM198, R195..
22. ABCDESLgp44_G -A2:2 -Ri=0.1 -N=20 -P=VILM103,NDEQ137,NDEQSS,QKR196,VILM13,LM105..

not be printed). The second section (labeled as ‘Settings’) lists the names of the contrast alignment for each column along with
(optionally) parameter settings specific to each column; this typically includes a seed pattern.

P ition:
10 11

0

12 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 21 22
L T T - - - 4 + - + + 1.RfcA (4963)
D - -+ + + + 2.RfcL (1245)
+ - - - -+ - = - - -+ - + + 3.ctfl8 (1629)
R + + - - - + - + + 4.Rfcs (2381)
- - - - - -+ o+ -+ - - - 4+ - 4 + 5.RECBCD (4798)
L e I - - - + - + + 6.RECE (1776)
- - - - - - + - - + + + + 7.gp4d (376)
+ - - - - - + + o+ o+ - - 8.Gamma (30854)
- - - - - + - - 9.DeltaPrime (46604)
+ - - -+ - - - + - - 10.RuvBlike (28386)
o= -+ - - - - - - 11.ClpLon (159052)
O - - - - - 12.bEBP (214972)
+ + - - - - - - - - 13.AAA (103894)
+ - - - - - - - - - 14.MiscARAPlus {675002}
- - 15.Reject (487977)
=== Contrast alignment statistics: ===
1: 1229328 487977 seqs (3.66478e+06; 3.0 nps; 9.7 npws) (25 cols)  AAAplus
2: 103894 1172038 seqs (684788; 6.6 nps; 25.7 npws) (25 cols) ARA
3: 214972 1060960 seqs (1.96243e+06; 9.1 nps; 44.5 npws) (25 cols)  bEBP
4: 159052 1116880 seqs (622744; 3.9 nps; 18.6 npws) (25 cols)  ClpLon
5: 28386 1247546 seqs (316515; 11.2 nps; 51.3 npws) (25 cols)  RuvBlike
6: 7837 9331 seqs (23789.7; 3.0 nps; 6.5 npws) (24 cols)  RfcAL
7: 2381 1273551 seqs (23509.3; 9.9 nps; 32.9 npws) (25 cols) rfcs_other
8: 4798 1190919 seqs (70179.6; 14.6 nps; 50.6 npws) (25 cols)  RECBCD_AE
9: 86789 1189143 seqs (706461; 8.1 nps; 22.3 npws) (25 cols)  ATPadjcntCL_AAA
10: 9761 1776 seqs (16519.4; 1.7 nps; 4.5 npws) (25 cols)  RECABCD_E
11: 8955 7837 seqs (40171; 4.5 nps; 13.7 npws) (25 cols)  RECBCDE A
12: 1776 4798 seqs (21742.7; 12.2 nps; 26.2 npws) (25 cols) RfcE_BCD
13: 4798 8368 seqgs (22079.5; 4.6 nps; 15.9 npws) (25 cols)  RECECD_AE
14: 1629 4963 seqs (21732.5; 13.3 nps; 31.0 npws) (25 cols)  Ctfl8_RfcA
15: 28386 17168 seqs (120332; 4.2 nps; 19.5 npws) (25 cols) RuvB_Rfc
16: 6208 7179 seqs (15917.7; 2.6 nps; 5.3 npws) (25 cols)  RECAL BCDS
17: 77458 9331 seqs (47404.4; 0.6 nps; 1.7 npws) (19 cols) GP_BCDES
18: 30854 46604 seqs (249869; 8.1 nps; 34.8 npws) (25 cols) G_DP
19: 94626 1181306 seqs (318463; 3.4 nps; 9.0 npws) (25 cols)  ClmpLdr_other
20: 376 13918 segs (7045.81; 18.7 nps; 46.1 npws) (25 cols)  gp4d_otherREC
21: 17168 1746741 seqs (219202; 12.8 nps; 32.4 npws) (25 cols) RFC_other
22: 15539 30854 segs (33362.7; 2.1 nps; 5.5 npws) (18 cols) ABCDESLgp44_G

Figure 6.6. Output hyperpartition (hpt) for AAA+ RFC proteins.
Based on the specifications provided by the input hpt and an input
MSA, BPPS returns an optimized of underlying constraints. The
output again has two sections: The first section (labeled
‘HyperPartition”) shows the columns and rows of the hpt. The rows
again correspond to the subgroups, where each row consists of a
series of ‘4, °-*, and * * characters, corresponding to the foreground,
background, or omitted partition for that column’s contrast
alignment, followed by the row number, the subgroup name and
(parenthetically) the number of sequences assigned to that
subgroup. The second section lists statistics for the contrast
alignments corresponding to the columns of the hpt. The
information in each of these rows consists of: the column number;
the number of foreground and background sequences; the log
probability ratio (LPR) in nats; the nats per sequence (nps); the nats
per weighted sequence (npws); the number of pattern positions (i.e.,
discriminating columns in the MSA); and the name of the contrast
alignment. The last line gives the total LPR (in nats); the final
sampling ‘temperature’; and the number of contrast alignments that
failed (i.e., that lack statistical significance).

Running BPPS in H-mode can create PyMOL session files showing the structural locations of

subgroup-specific residues, as illustrated in Fig. 6
identified in Fig. 6.4.

@ (b)

/¢p117

2 Glut1s
(catalytic base)

°
Mg+t

&,
Asp114

Asng3 OF

Glu115 (catalytic base)

¢

Asn79

.7, which shows the locations of constrained residues

Figure 6.7. Structural features associated with the six categories of RFC constraints shown in Fig. 6.4. The central hole of the RFC
complex, through which DNA presumably is thread, is located at the bottom of each panel. (a) Conformation of RFC-B when
bound to ATP and the clamp [5]. In all four active RFC ATPases, the arginine corresponding to Arg84 in RFC-B forms hydrogen
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bonds with main-chain oxygen atoms on either side of the putative catalytic base, as shown. Oxygen, nitrogen and (predicted)
hydrogen atoms establishing hydrogen bonds (broken lines) or involved in ionic interactions are shown in red, blue and white,
respectively. Ionic and van der Waals interactions are shown as dot clouds. Residues with cyan side chains distinguish active RFC
ATPases from catalytically impaired RFC-E subunits; the magenta residue corresponds to the putative catalytic base shared by all
active AAAC ATPases; orange residues distinguish all RFC subunits from bacterial clamp-loader ATPases; and yellow residues
distinguish active RFC ATPases that interact with an adjacent ATP site from other RFC subunits. (b) A conformation of ADP-
bound RFCS, the archaeal small subunit corresponding to RFC-B [31]. The Walker B-interacting arginine (Arg84 in RFC-B or
Arg88 in RFCS) is repositioned and, on the basis of a model of the RFC-DNA—clamp complex, could interact with DNA thread
through the clamp. (¢) Regions of interaction between RFC-A, RFC-B and RFC-C subunits in the crystal structure of the RFC—
ATP- clamp complex. The residue side chains corresponding to the NxSD motif have been omitted for clarity. The phenylalanine
in RFC-B (Phe96) seems to form a hydrophobic pocket for Lys109. Blue residues distinguish RFC-A from other RFC subunits;
the red residue most clearly distinguishes all clamp-loader subunits interacting with an adjacent ATP site from other AAAC
ATPases.

The get_pdb, TweakPDB, and vsi2pml programs. BPPS and several other programs can map the structural
locations of pattern residues (as in Fig. 6.2E-G); this requires as input structural coordinate files, which
may be retrieved using the get pdb program, which also adds modeled hydrogen atoms to identify
hydrogen bonds automatically based on geometric criteria. TweakPDB can be used to analyze or modify
a pdb-formated coordinate file. To conserved disc space, BPPS may store pattern residue locations for
various proteins of known structure within a *.vsi file, from which the vsi2pml program can generate
corresponding PyMOL session (*.pse) files, automatically. See the Auxilliary Programs section below for
detailed descriptions of get pdb, tweakPDB and vsi2pml.
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7. Correspondence between sequence and structural constraints (SIPRIS)

SIPRIS (Structurally Interacting Pattern Residues’ Inferred Significance) identifies correlations
between BPPS- and structurally-defined residue sets. SIPRIS takes as input a set of BPPS-defined pattern
residues and corresponding structural coordinates for proteins of interest and, for each structure, identifies
statistically significant clusters or hydrogen bond networks of pattern-residues. The simplest cluster is
predefined, for instance, by residues at the interface between subunits or in contact with substrate, as
illustrated in Fig. 7.1 for N-acetyltransferases, which transfer an acetyl group from CoA to a target substrate.

Figure 7.1. SIPRIS [46,47] estimates the statistical significance of all but two of the 25 residues most distinctive of the
glucosamine-6-phosphate N-acetyltransferase (Gnal) family; these either (A) occur at the interface between homodimeric subunits
(blue & pink cartoon traces) (p = 8.5%10”7) or (B) interact with substrate (shown in cyan) (p = 6.8x10-5) (pdb_id: 4ag9 [48]). The
remaining two residues (not shown) are: Lys116, which may position CoA for catalysis by interacting with a CoA phosphate group,
and Cys141, which covalently links to the sulfur atom of CoA within Gnal [48].

SIPRIS can also select the optimal, structurally-defined cluster among a nested set of clusters: Starting
from the highest scoring BPPS pattern residue or from a user-defined residue, molecule or atom, SIPRIS
first creates an initial cluster by sequentially adding “structurally-adjacent” residues until reaching a pattern
residue. (Structural adjacency can be defined based either on the closest hydrogen bond to a current member
of the cluster or on the distance either from the starting residue or from another current member of the
cluster.) Next, it adds more residues in this way until reaching the next pattern residue; this is the second
cluster. Finally, it repeats this process until generating a cluster containing all BPPS residues. From this
nested set, SIPRIS selects the cluster that most significantly overlaps with the BPPS-defined residue set
(after adjusting for the number of hypotheses considered); this is illustrated for Rab, Rho and Ran (R?)

GTPases in Fig. 7.2. A y B s

. Rhot - &) Rabd
Fig. 7.2. SIPRIS defined GTPase clusters. A. Rab/Rho/Ran R137 P
(R?) hydrogen-bond network (red sidechains) in Rhol (pdb_id: 4 )
3refB [49]; p = 6.2x105). This includes a salt bridge (R137-
E163) and CH-m interactions (G27-W114; G131-F99)
hypothesized to modulate nucleotide exchange by stabilizing
the P-loop and guanine binding loop [19,33,42]. These loops
(bright green backbone traces) harbor residues (yellow
sidechains) that bind to guanine-nucleotide and that are
distinctive of all GTPases. B. A Rab4 R? hydrogen bond
network (red sidechains) (p = 2.6x10°°) and a Rab-specific
cluster (orange sidechains) (p = 2.9x10'%) contacting the
Rabenosyn-5 effector (pdb_id: 1z0kA [50]).
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A BPPS-SIPRIS comparative analysis of exonuclease-endonuclease phosphatases (EEPs) [51]
identifies residues presumably responsible for the functional specificity of APE1 endonucleases (Fig. 7.3)
and of inositol polyphosphate 5-phosphatases (INPP5) (Fig. 7.4), which cleave phosphodiester bonds in
nucleic acids and phospholipids, respectively. These analyses suggest that the same core structure and
catalytic residues can mediate very different reactions by interacting with a network of family-specific
residues, thereby presumably forming a substrate-specific ‘reaction chamber’.

Fig. 7.3. BPPS-SIPRIS analysis of APEI
endonuclease bound to DNA with an abasic site
analog (pdb_id: 5dfi) [52]. APEI incises an abasic
site phosphodiester backbone in DNA. A proposed
mechanism involves superfamily-conserved active
site residues forming hydrogen bonds with abasic
site phosphate group oxygen atoms [53]. A. A
cluster of EEP superfamily residues (yellow
sidechains; p = 5.2x10°) and a hydrogen bond
network of exolll-AP-endo family residues (red
sidechains; p = 1.6x10°), both of which are
centered on the abasic site (circled). Family
residues aggregate between the catalytic core and ' L 4
a loop containing DNA-interacting basic residues (magenta sidechains); they insert into the DNA major groove to form a kink that
engulfs the abasic-DNA strand and thus appear to form a substrate-specific “reaction chamber”. Nitrosation of exolll-AP-endo
residue Cys310 results in dissociation of APE1 from DNA and relocation to the cytoplasm [54]; thus, the associated hydrogen-
bond network may communicate the nitrosation signal to the DNA binding site. B. Close up of the APE1 active site. (For clarity
not all residues are shown.) Hydrogen bond atoms use CPK coloring.

Figure 7.4. BPPS-SIPRIS analysis of the A T )
inositol  polyphosphate 5-phosphatase [~ & y -\
INPP5B.  Color _ scheme:  EEP JQB DECH el
superfamily, INPPS family and INPP5B
subfamily residue sidechains: yellow, red,
and orange, respectively; ligands, cyan;
hydrogen bond atoms, CPK coloring.
A,B. An INPP5 hydrogen bond network
(p = 1.1x107) that forms a secondary
shell around the active site and is
hypothesized to recognize inositol

polyphosphates having phosphate groups [ rn
attached at positions 4 and 5 of the
inositol ring. This network is adjacent to \Fyy gm

Q4an Dare © !

a superfamily hydrogen bond network (p "8

= 3.2x10°). A. INPP5B bound to the ; INPP5B
reaction product, phosphatidylinositol
3,4-bisphosphate  (pdb_id: 4cml)[55].
SPIRIS clustering results: EEP, p =
5.8x10°13; INPP5, p = 3.9x10°7; INPP5B,
p = 0.0021. The INPP5B subfamily
network lies between the proposed
membrane interface [55] and the EEP
catalytic core, suggesting a role in
sequestering specific membrane-
associated substrate from the lipid bilayer
[56]. B. INPPS hydrogen bond network within INPP5B (pdb_id: 3mtc). C. View focusing on the substrate 4-phosphate group.
INPPS5 enzymes cleave the 5-phosphate, but require for recognition the 4-phosphate, which directly interacts with three INPP5-
family basic residues (K503, K516, and R518). D. In INPP5B (pdb_id: 5a7i [57]), INPPS-family residues most remote from the
catalytic core are part of a cleft to which a phosphate is bound. This site may bind a molecule similar to the known substrate and
may be allosterically linked to the active site via the network of INPPS residues. E. The INPP5B-like OCRL protein with glycerol
bound to a site analogous to that indicated in (D) (pdb_id:.4cmn [55]).

glycerol
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8. Correspondence between pairwise MSA correlations and structural
interactions (DCA, STARC)

) r . ) _ v . ATRLTLTAKKDGPCD
STARC: Statistical T 00{ fqr Ana]yszs of  residue mutations result N g ®¢ constraint ATRLTLTAKKDGPCD
Residue Couplings. Predicting residue-to- instructurally @ ® — ATRLTLTARKDGECD
residue structural contacts from a multiple ~compensating mutations ¢~ g o nference Ak kEGERD

: : : in nearby residues w-C ATKLTLGAKKEGGCD
alignment covariance matrix has been a ¥ TR T TR K VCECD

ATWLTLTAKKVGPCD

topic of study for some time [58,59], the
rationale being that residue mutations
occurring at one position often result in
compensatory  mutations at  other,
structurally interacting positions. A problem with this straightforward approach is that residue positions
may be correlated transitively: if position i interacts with position j and j with &, then residues at i and &
may be correlated even though they fail to interact directly. A critical breakthrough came with Direct
Coupling Analysis (DCA) [60-64], which distinguishes direct from indirect correlations [62,65,66]. DCA
has been validated through numerous studies on globular [63,65,67] and membrane [60,61,68,69] proteins,
and on protein internal repeats [70] and complexes [71-73]. STARC [74] estimates the statistical
significance (as S = -logio(p)) of the correspondence between high scoring DC-pairs and 3D structural
contacts; it can be used to evaluate DCA methods [74] and the potential functional relevance of alternative
conformations and of homomeric and heteromeric interactions. Our DARC and SPARC programs (see
below) incorporate both DCA and STARC. Prior to running STARC they perform DCA using pseudo-
likelihood maximum entropy optimization [75], which outperformed [74] DCA methods based on sparse
inverse covariance estimation [76] and on multivariate Gaussian modeling [77].

High DC-scoring pairs are

indicated by rods > Pairwise correlations
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9. Multidimensional query-centric analysis of protein constraints (DARC)

DARC [81] (Deep Analysis of Residue Constraints) performs a multidimensional analysis that combines
DCA, STARC, BPPS, and SIPRIS into a single, query-centric program for identifying and visualizing
constraints as superfamily and functional-subgroup conserved residues, as family-specific, high DC-scoring
residue pairs, and as correlations of these with each other and with structure. It does this by: (1)
characterizing BPPS pattern residues and high DC-scoring residue pairs most distinctive of subgroup along
the query sequence’s lineage. (2) Visualizing pattern residues within representative aligned sequences. (3)
Automatically generating PyMOL [82,83] session files showing the structural locations of constrained
residues and of high DC-scoring pairs. (4) Determining how functional subgroup-specific residues and high
DC-scoring pairs correlate with each other and with structure using SIPRIS. We illustrate DARC for
bacterial DNA clamp loaders. ADP_ADP

The bacterial DNA clamp loader
AAA+ complex loads ring-shaped
sliding B-clamps onto DNA to keep
polymerase attached during
replication; it contains one 0, three v,
and one & AAA+ subunits semi- Loading a B-clam[;onto DNA.
circularly arranged in the order: d-y;-
v2-v3-0’. Only v is active, though both y and 8’ functionally influence an adjacent y ATPase domain. Hence,
v and &’ share certain (y/8’-) constraints, while vy is subject to additional (y-) constraints absent from 6’. In
the presence of ATP, the clamp loader binds to and opens the B-clamp and, upon binding to DNA, ATP
hydrolysis occurs, leading to closing of the f-clamp onto DNA [84-86].
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. loop residues 116-120

A}
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o2 &al
N-termini
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Fig. 9.1. Residue constraints within the E. coli DNA clamp loader complex bound to primer DNA and to an ATP analog
(pdb_id: 3glf [87]). A. View of the y- and y/8’-residues (red and blue sidechains, respectively) at the yi/y2 interface and of the top
v/8’-DC-scoring pairs linking together (within y2) the DNA-binding 02 and a3 N-termini (magenta rods) and the B-clamp binding
loops (purple rods). The y-residues cluster around the catalytic base (yellow sidechain circled in red; p=1.8x10"). The y/8’-residues
cluster around L140 (circled in blue; p=6.7x10"1?). B. Close up of constrained residues linking the ATP, DNA, and clamp binding
sites. Color scheme: y/&’-residues, blue. y-residues, red. Backbones of y1, y2 and ys, blue, dark yellow, and pink, respectively. p-
clamp binding loops in y1, v2, and v3, marine blue, orange, and bright pink, respectively. Helices a2, a3, and 04 of y2, orange.
Walker B catalytic residues in y1, yellow. ATP analog ADP*BeFs and DNA, cyan; Zn'", gray; Mg*", green.

The following functionally-congruent features interconnect the ATP, DNA, and clamp binding sites
[81]: (1) Centered on the catalytic base near the y-phosphate group of ATP are (SIPRIS-identified) y- and
v/6’-residue clusters on opposite sides of each y-to-y/d’ interface (Fig. 9.1A); the a3 helix C-terminus
harbors y/&’-residues that interact with the adjacent ATP binding site (Fig. 9.1B). (2) The N-termini of the
02 and a3 helices bind DNA (due to their partial positive charges), harbor y/d’-residues interacting with
DNA, and are entwined by six top y/8’-DC-scoring pairs (i.e., computed using a subgroup alignment of y
and o’ sequences). And (3) the clamp-binding loop attaches to the a2 helix C-terminus, harbors two top
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v/8’-DC-scoring pairs, and forms hydrogen bonds with y- and v/8’-residues. The positively charged
sidechain of the y/&’-residue, K121, could interact with the 02 C-terminal negative dipole. Since DNA
interacts with the a2 N-terminal positive dipole, 02 may act as a leveraging rod between the clamp binding
site and DNA. Likewise, 03 may act as a rod linking the ATP-binding site to DNA. Together, these features
appear to constitute an allosteric network coupling DNA binding to ATP hydrolysis & clamp loading [81].
The corresponding contrast alignments are shown in Fig. 19.1 of Appendix 7: Using a MSA of 463,471
AAA+ proteins and the E. coli 8’ clamp loader subunit as the query, BPPS identified those residues that
most distinguish both y and &’ from other AAA+ proteins (Fig. 19.1C). Using the y/3’ sub-MSA and the
E. coli y subunit as a query, BPPS identified those residues that most distinguish y from &’ (Fig. 19.1E).
DARC saves a BPPS checkpoint file that can later be used to initiate a deeper analysis by expanding
subtrees within the query’s lineage.
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Figure 9.2. DARC-generated alignments highlighting all residues conserved in y and &’ clamp loader proteins and residues
distinctive of the AAA+ superfamily, of the y + &” subgroup, and of y but not 6’. These are shown using five versions of the
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same representative set of y proteins (in panles a-e) and of &’ proteins (in panels a to ¢). Residues are highlighted to indicate
amino acid biochemical properties based on the following color code: red font with yellow highlight, non-polar (AVILMWEFY) ;
blue font with yellow highlight, cysteine (C); red, acidic (DE); cyan, basic (KR); magenta, polar (STNQ); green, glycine (G);
blue, histidine (H); black, proline (P). Non-conserved positions in panels (a) and (d) and non-pattern residues in panels (b), (c)
and (e) are shown in gray font. The leftmost columns in panels (b), (c) and (e) give the NCBI sequence identifiers; these are
colored the same as the residue sidechains in Figure 2 of the paper. a. Alignment highlighting all y + 8’ conserved residues.
Those sequences above the line within the alignment correspond to representative y proteins from the (distinct) phyla denoted in
the leftmost column; the first sequence corresponds to the E. coli y subunit (pdb_id: 3glfB). Those sequences below the line
correspond to representative &’ proteins from distinct phyla, the first sequence of which corrsponds to the E. coli 8’ subunit
(pdb_id: 3glfE), which was used as the DARC query. The positions listed at the bottom correspond to the E. coli y subunit. b.
BPPS contrast alignment showing the same sequences as in panel (a), but highlighting only those residues most distinctive of the
AAA+ superfamily. The heights of the red bars above each highlighted column estimate the selective pressure imposed on
pattern residues at that position using a semi-logarithmic scale. Directly below the aligned sequences, the characteristic AAA+
residues at each position are shown and, directly below these, corresponding frequencies are given in integer tenths. A ‘7°, for
example, indicates that the corresponding residue occurs in 70-80% of the 452,949 AAA+ sequences in the alignment. Below
this is shown the residue positions and sequence of the E. coli y subunit (with the Thr 165 residue that was mutated to Val
highlighted in red), and shown below these are predicted secondary structure elements (symbol: H, helix; E, strand), helix and
strand designations, and AAA+ structural motifs (red font) and putative clamp binding loops C1 and C2 (green font). Secondary
structure assignments were calculated for the E. coli y subunit using DSSP {PMID 6667333}. c. BPPS contrast using the same
format as in panel (b) to highlight those residues that most distinguish y and & subunits from other AAA+ proteins. d. DARC-
generated alignment highlighting all residues conserved in y. e. DARC-generated alignment highlighting residues distinguishing
vy subunits from &’ subunits. A few of these are conserved in other catalytically active AAA+ ATPases; see panel (b).
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10.Constraint analysis of empirical and MD simulated structures (SPARC)

SPARC (Search Procedures for Analysis of Residue Constraints) [88], like BPPS, runs in various modes.
These modes fall into two categories: (1) the computation of DCA and STARC S-scores for one or more
structures; and (2) Finding interactions within a time series set of MD simulated structures of a specific
protein or protein complex. The following table lists the modes for each of these categories:

mode Description

Perform DCA and compute STARC S-scores
rank Rank various protein structures based on S-scores.
hetmer Compute S-scores for interacting heteromeric subunits (need fasta seqs with NCBI taxids)
simul Compute S-scores for a time series set of MD simulated structures.

Find interactions within a time series set of MD simulated structures
dist Residue-to-residue or residue-to-ligand heavy atom contact distances
correl Show contingency tables for correlated residue interactions

and report interactions that form and dissociate during the simulation

sc2sc Residue sidechain hydrogen bond interactions
sc2bb Residue sidechain to backbone hydrogen bond interactions
sc2sb Run both sc2sc and sc2bb modes; also reports CH-pi and aromatic-aromatic interactions
bb2bb Find changes in backbone c=o to backbone n-h distances

SPARC rank mode. In the rank mode, SPARC takes as input an MSA in cma format and the path to a
directory containing coordinate files for aligned sequences of known structure; it makes associations based
on sequence/structural identifiers. Specifically, structural file names must use the syntax <pdbid> H.pdb
where <pdbid> is the lowercase version of the NCBI pdb identifier (e.g., 'labc' for pdb identifier IABC_A).
The results for a rank search of death domain structures are shown in Table 10.1. Fig. 10.1 shows the
locations of the highest scoring direct couplings at homodimeric interfaces.

Table 10.1. SPARC ranking of pyrin-related death domain structures by S-score. Eighteen proteins of known structure
were identified among 3,572 pyrin domain aligned sequences, five of which are shown. Search parameters: » = 4.0
A; m=S5. See Table 10.2 for parameter definitions. A colon between two chain designations (e.g., A:C) indicates that
S was computed using, for each residue pair, the shorter of the internal versus the homodimeric 3D distances (e.g., the
A-to-A versus the A-to-C residue distances).

pdbid chain(s) S L D X d F AS resolution method Description
6nev A:C 420 1977 111 141 60 19 129 3.7A cryo-EM NLRP6 filament
6nev A:B 415 1977 111 141 60 19 124 3.7A cryo-EM NLRP6 filament
6nev A:H 37.1 1977 107 141 55 19 8.0 3.7A cryo-EM NLRP6 filament
6nev A:Q 36.6 1977 107 154 57 20 7.6 3.7A cryo-EM  NLRP6 filament
2nlf A:B 352 1977 98 141 53 1.8 11.8 4.0A cryo-EM ASC filament
6nev A 291 1977 92 141 46 19 3.7A cryo-EM  NLRP6 filament
2nlf A:G 282 1977 87 181 50 23 438 40A cryo-EM ASC filament
6nev AR 277 1977 102 141 47 19 -14 3.7A cryo-EM NLRP6 filament
2nlf A 234 1977 80 181 44 23 40A cryo-EM ASC filament
2nlf A:H 227 1977 88 141 41 18 -0.7 40A cryo-EM ASC filament
4ewi A 194 2045 103 151 42 1.9 228 A X-ray NLRP4
3qf2 A 189 2045 101 187 45 24 1.7 A X-ray NALP3
4ewi A:B 187 2045 107 179 45 23 -0.6 228 A X-ray NLRP4
5h7n A:B 182 2042 100 185 44 24 02 1.85A X-ray NLRP12
5h7n A 180 2042 97 185 43 24 1.85A X-ray NLRP12
3qf2 A:B 18.0 2045 105 187 45 24 -09 1.7A X-ray NALP3
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Table 10.2. List of variables defined for STARC S-scores.
Symbol  Definition
L Total number of MSA column pairs used

Maximum 3D distance used to define contacting residue pairs (default: 4 A)

Number of contacting pairs, i.e. distinguished elements

Optimum cut point (as defined by STARC) for partitioning an array of length L

Number of left-distinguished elements, i.e. contacting pairs to the left of the cut point X (inclusive)
Minimum sequence separation between residue pairs in query protein of known structure

The length of the input MSA

F = X + £ indicates how spread-out the value of X is relative to the MSA length

-logio P, where P corresponds to the estimated probability after correcting for multiple tests

th > I o x T

B>
%]

Change in the value of S upon the inclusion of interactions between homomeric subunit interface(s)

A 20 10 5 2 S T .3
R36:A-E27B 4.83 100 100 100 98 :
K35:A-D60:B 3.37 100 100 98 64
D63:A-K35:C 2.82 100 100 98 38
R3S:AL64A 372 95 80 38 0
E66:A-1139:C 296 838 73 39 0
Q31:A-R58:H 383 86 67 31 0 8 Wy —
H39:A-A65B 560 88 55 19 0 i~ 4

0 ’ AL R TN
0

A rank  DC-pair dist # times among top: B | i @
. I
-

0O ~1 Oy Lh = ) R

L78:A197A 451 83 49 15
9 R82A-AO4A 433 75 43 T
10 RSS:A-E27:Q 285 67 40 11 0

6nev

Figure 10.1. SPARC rank analysis of pyrin-relate death domain (DD) proteins. A. Table of the 10 top residue pairs
for the cryo-EM structure of the NLRP6 PYD filament (pdb_id: 6ncv [89]) based on sub-sampling of aligned pyrin-
related sequences. SPARC robustly ranked residue pairs based on the number of times they were among the top DC-
scoring (i.e., having the top average product corrected Frobenius norms) for 100 input MSA sub-samplings with
replacement. Each sub-MSA sampled consisted of 500 sequences randomly drawn from among the 3,572 sequences
in the input MSA. Seven of the 10 highest ranked pairs (those shown in black font) correspond to interactions that
include contacts between adjacent death domains—suggesting that these contacts are functionally important. B. Image
of the NLRP6 PYD filament cryo-EM structure. The 12 pairs that interact in trans, among the 30 highest ranked pairs,
are indicated by red rods. Subunits adjacent to the A chain are colored, whereas non-adjacent subunits are shown in
light gray. C. Image of the NALP3 PYD crystal structure (pdb_id: 3qf2 [90]). For this structure, SPARC computes a
negative value for AS suggesting that the interaction lacks biological relevance and thus may be a crystallographic
artifact.
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Analyzing heteromeric complexes. SPARC’s hetmer mode
characterizes constraints associated with a heteromeric
complex for which the user provides an MSA for each of two -
components. From each MSA, SPARC creates a . ) | i~
subalignment consisting of the one sequence from each .. -
species that is most closely related to the corresponding !
‘gold standard’ component within a given Cryo-EM or . iy A 4 ;
crystal structure of the complex. Finally, it computes S- §a(Qk S, } A v AN
scores for trans interactions between the two subunits, as WL A a <
illustrated in Fig. 10.2. Of course, some components may be b '
absent for some species. To help identify such cases, SPARC Fig. 10.2. The highest DC-scoring residue pairs across
outputs, for each component, a histogram of the pairwise U'¢* and b subunits of tryptophan synthase (pdb_id:
. ) 5e0k [1]) occur at the interface; S=log,,(p) = 21.1.
scores between each of the candidates and its gold standard  gid and dashed red lines correspond to DC-pairs that
sequence—with scores for true orthologs tending to follow a are separated by < 10 A and > 10 A, respectively.
unimodal distribution that is approximately normal. A
published study [88] reports strong DC-constraints at several heterodimeric enzyme interfaces, indicative
of selective pressures maintaining the residue couplings.

B tryptophan synthase

;
4
S o
-

Dynamic analysis of constraints.

SPARC aids the interpretation of F ADP,—L A Dpags R293
residue constraints by ATP AT, \‘ L) /
characterizing them dynamically Ly Do \
rather than merely within static R299 4 J\LDZQS R299

structures. Unlike standard 2 ; N5

analyses of molecular dynamics A R293 || (

(MD) simulation data [91-97], this g, 50,3 (lefi) R299 and E239 within the bEBP hexamer bound to 1ATP + 5 ADP.
can reveal residue interactions and (middle) The subunit A D295-R299 interaction may aid ADP release from subunit
allosteric couphngs associated with F. (vight) The subunit B D295-R293 interaction frees the R-finger R299 to interact

otherwise overlooked constraints. in trans with the y-phosphate of ATP bound to subunit A.

We illustrate this process for the bacterial enhancer binding protein (bEBP) NtrC1 from Aquifex aeolicus:
bEBPs activate transcription by remodeling RNA polymerase (RNAP) containing the sigma factor ¢>*
[98,99]. Simulations based on various NtrCl ATP/ADP-bound states reveal alternative interactions
involving residues distinctive of bEBP ATPases. For instance, when ATP is bound at the A:B interface
and ADP at other interfaces, the AAA+ R-finger R299 interacts with the y-phosphate of ATP (Fig. 10.3,
right), whereas at the adjacent F:A interface, R299 forms a salt bridge with the bEBP-residue D295—
thereby sequestering it away from ADP, which then may be more easily expelled (Fig. 10.3, middle). In
the same state, the bEBP-residue R293 in subunit B forms a salt bridge with the catalytic base E239 of
subunit A, pulling it away from the y-phosphate ‘ X ATI\D; ™

of ATP to presumably inhibit ATP hydrolysis | R299 A 0238

(Fig. 10.4, left). However, this salt bridge is 5239
‘w(’i‘ ke

disrupted when the nucleotide binding site of

subunit F is vacant (Fig. 10.4, right). Together, %\é\

these interactions may prevent ATP hydrolysis e D295 .
v Expel ADP

at the A:B interface until ADP is expelled from REp 5239 —A oo :DmF 'ADP

the F:A interface, perhaps thereby facilitating catalvt-cbaseAD

sequential hydrolysis around the hexameric ring. Fig. 10.4. MD conformatlons of R293 & E239 at the A:B 1nterface in
These interactions, which are absent in the the IATP+5ADP (left) & 1ATP+4ADP+apo (right) states. The R293-
corresponding crystal structure [100], were E239 salt bridge may prevent ATP hydrolysis until ADP is expelled

. . . . from the adj t F subunit.
stably maintained during these 1 ps simulations. rom e acyacent T subim



Correlated motion & allosteric coupling. SPARC
can identify correlated interactions among
constrained residues, as we illustrate here for NtrC1,
which forms either a heptameric or a hexameric
complex. Partial ATP occupancy causes the
heptameric closed ring of NtrC1 to rearrange into a
hexameric split ring that drives both ATP hydrolysis
and the interaction of RNAP with ¢>* [100]. During
an MD simulation of the heptamer (pdb id: 3mOe
[101]) formation and dissociation of R293-D239-
trans and R293-D295-cis interactions are highly
correlated: When one salt bridge is formed, the other
often dissociates, which may help mediate the
heptamer-to-hexamer transition. An MD simulation
of the hexamer (pdb id: 4ly6 [100]) suggests that
allosteric coupling of an R201:E246 cis-to trans
switch to ATP-hydrolysis (Fig. 10.5) may mediate
RNAP-c** remodeling.
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Fig. 10.5. Potentlal allosteric coupling of ATP hydrolysis to
movement of the a2 and o3 helices, which are linked to the ¢>*-
binding L1 and L2 loops—as observed during a 1 pus MD
simulation of the bEBP hexamer. A. A E246-R201 cis-to-trans
switch associated with bEBP-residues, K250 and E205 (red), and
with the two highest DC-scoring pairs, E246-R201 and A197-
A249 (orange). B. The trans state is associated with formation of
catalytically favorable interactions among sensor 1 residues, the
catalytic base, and the ATP-y-phosphate. C. Restructuring upon
ATP hydrolysis of the 03 helix and of the 6>*-binding L2 loop.
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11.Auxiliary programs
Analyses based on our major programs, namely MAPGAPS, BPPS, SIPRIS, DARC, SPARC, and
eCOMPASS, are facilitated by the auxiliary programs listed in Table 11.1. Several of these are described

in more detail below. The usage statement for each program provides further information.

Table 11.1. List of auxiliary programs that augment our main analyses.

program description

addphylum Adds taxonomic information to a file of fasta sequences; requires NCBI nr and taxdump files.

bpps2vsi Creates a vsi (visualize structural interactions) file from files generated by bpps (see vsi2pml below).

cdd2mgs Converts CDD hiMSAs (available at ftp:/ftp.ncbi.nih.gov/pub/mmdb/cdd/hiMSA) into MAPGAPS format.

convert msa Converts an MSA from fasta to cma format and vice versa; also converts an MSA from cma into rtf format.

edit cm_a Performs editing operations on a cma-formatted MSA file.

edit: hpt Performs editing operations on a bpps hyperpartition (*.hpt) file.

get pdb Automatically retrieves and adds hydrogen atoms to pdb coordinate files corresponding to pdb_identifiers
within a cma-formated MSA or a fasta sequence file.

getPDB Retrieves pdb coordinate files given a list of pdb_identifiers.

matchcema Reports matches to user specified pattern residues within a set of bpps subgroup MSAs

purgemsa Reduces sequence redundancy given a cma-formatted MSA or concatenated MSAs.

tree2hpt Converts a tree in Newick format into a hyperpartition that can serve as input for bpps in H mode.

tweakema Performs a wide variety of operations on a cma-formatted MSA.

tweakPDB Performs a wide variety of operations on a pdb structural coordinate file.
vsi2pml Creates PyMOL scripts (*.pml) or session (*.pse) files from a vsi file.

Retrieving structural coordinates. Structural coordinate files can be retrieved from the PDB using the
program get pdb, which performs the following steps: It first retrieves NCBI pdbaa identifiers from
sequences within either an input MSA or fasta file. Next, it retrieves corresponding structural coordinate
files from the PDB and then runs the reduce program to add modeled hydrogen atoms. (Adding modeled
hydrogen atoms aids identification of geometrically-accurate hydrogen bond interactions.) The names of
final coordinate files take the form <pdb_id> H.pdb, where <pdb_id> corresponds to the pdb identifier in
lower case. This process requires both the fasta file pdbaa, which needs to be formatted using the command
“makeblastdb -in SFASTADIR/pdbaa -input_type fasta -dbtype prot -parse seqids”, and the programs
blastdbemd and makeblastdb, which may be downloaded from the NCBI via anonymous ftp at
ftp.ncbi.nlm.nih.gov. The blastdbemd program must be on your path with the environmental variable
SFASTADIR set to the path to the directory containing the pdbaa file. You also need to put the script
batch_download.sh (available at: www.rcsb.org) on your path and to set the environmental variable
'REDUCE_PRGM' to the reduce program, which is available at https://github.com/rlabduke/reduce.

Examining and editing structural coordinate files. The tweakPDB program takes as input a structural
coordinate file in pdb format or (for a few options) a file listing the paths to multiple coordinate files. Its
many different options allow the user to extract information or to make changes to the input file. For
example, such information includes: covalent and hydrogen bond angles and distances; residue interactions
with other residues or with substrate; residue buried surface areas; and amino acid sequences corresponding
to protein chains. Possible changes to the input file include: converting MSE (selenomethionine) residues
to MET or HIE, HID, HIP to HIS; identifying; eliminating water molecules; renaming chains; truncating
chains; and renumbering residues in a chain. Such modifications may be necessary to complete an analysis.

Counting matching residues. The bpps program partitions an MSA into subgroups, which are stored as a
concatenated series of sub-alignments within the output file <prefix> new.mma (where the input
alignment is named <prefix>.mma). Given this output file, the program matchcma computes the



ftp://ftp.ncbi.nlm.nih.gov/
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percentage of matching residues for each subgroup given a user-provided residue pattern corresponding to
column positions in the MSA. For example, the command:

matchcma matchcma AAA+ new.mma W4,YF8,D193,P10,E70,R77

with AAA+ new.mma being a set of subalignments of AAA+ domains, returns the following percentages
of conservation among 64 subgroups of AAA+ proteins.

ID PATTERN: w4 YF8 D193 P10 E70 R77 Total_sq AvePercent
1 RfcA: 90.2 92.0 97.2 97.7 97.4 98.6 1726.8 (95.5)+
7 RfcC: 87.3 94.2 96.6 94.8 96.4 98.6 1168.2 (94.6)+
6 RfcB: 91.2 92.6 94.6 94.6 97.2 97.4 927.5 (94.6)+
8 RfcD: 88.2 87.7 95.2 92.6 98.4 99.2 1274.2 (93.6)+
5 Rfcs: 93.5 92.6 95.0 96.2 85.5 87.9 3072.7 (91.8)+
14 MCM: 0.2 3.9 0.5 0.0 0.0 8121.3 (0.8)-
15 DnaA: . 0.6 3.0 0.0 0.5 23669.8 (0.7)-
39 Dyneinl: 0.2 1.2 1.2 1.0 1846.8 (0.6) -
19 Clp: 0.0 0.6 0.2 0.8 0.1 1.1 72440.2 (0.5)-
24 MoxR: 0.1 0.9 0.0 0.0 . 0.0 57145.5 (0.2)-
21 ClpX: 0.0 0.4 0.0 0.0 0.1 . 34122.7 (0.1)-
PATTERN: w4 YF8 D193 P10 E70 R77 Total_sq AvePercent

In this case, the pattern matches various replication factor C (Rfc) AAA+ subunits.

Visualizing structural features. Often an analysis involves dozens or hundreds of protein structures. To
avoid creating too much output, several of our programs create a *.vsi file, which stores the information
required to visualize results using PyMOL. The vsi2pml program is used to obtain PyMOL scripts (i.e.,
* pml files), which requires a separate coordinate file, or, if PyMOL is on your path, session files (i.e.,

* pse), which include the coordinates. This allows the locations of and interactions among various
categories of residues to be visualized using PyMOL, as illustrated in other sections of this tutorial.
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12.Performing a complete sequence/structural analysis.

This section gives step-by-step instructions on how to perform a sequence/structural analysis using our
approach. Details regarding the input, output and runtime options are described in the command line usage
statement for each of our program.

Compiling our source code. The following items are used to compile our source code, which is available
at https://www.igs.umaryland.edu/labs/neuwald/software/

JSON library (https://github.com/json-c); this is required for compilation.
CUDA (https://developer.nvidia.com/cuda-downloads ) is required to run direct coupling analysis
faster on a GPU; but this is optional.
OpenMP for multiprocessing (though any decent compiler should already include it).
Both bison and flex are required:
Download the src for e.g. bison from http://ftp.gnu.org/gnu/bison/
Download flex from https://github.com/westes/flex/releases

CMake (https://cmake.org/download/ ) is required for compilation. On many systems it should be already
installed. To automatically obtain structural coordinate files and to model hydrogen atoms using our
get_pdb program, two third-party programs need to be installed and on your path (see below).

Obtaining and annotating sequence data. The NCBI non-redundant (nr) and pdbaa fasta and taxdump
files are available via anonymous ftp at ftp://ftp.ncbi.nih.gov/. You can access this site using a command
line FTP program, login as “anonymous” and give your email address as your password. Once at this cite
use the following commands to obtain these files:

cd blast/db/FASTA

get pdbaa.gz

getnr.gz

cd././../

cd pub/taxonomy/accession2taxid/

get pdb.accession2taxid.gz $ {PROJECT _HOME}/molbio/ncbi_downloads/pdb.accession2taxid.gz
get prot.accession2taxid.gz $ {PROJECT HOME}/molbio/ncbi _downloads/prot.accession2taxid.gz
cd../

get taxdump.tar.gz $ {PROJECT _HOME}/molbio/ncbi_downloads/taxdump.tar.gz

Move these files to appropriate directories and use gunzip to decompress them. You should set the
environmental variables SFASTADIR and $STAXDUMPDIR to these directories so that our programs can
access these files. To taxonomically annotate the fasta files, you first must extract the taxonomy files using
the commands:

tar xvf taxdump.tar
grep 'scientific name' names.dmp > scientific.dmp

and then use the following commands to taxonomically annotate sequences in the fasta files.

cat nr | addphylum stdin > nrtx
cat pdbaa | addphylum stdin -pdb > pdbaatx


https://www.igs.umaryland.edu/labs/neuwald/software/
https://github.com/json-c
https://developer.nvidia.com/cuda-downloads
http://ftp.gnu.org/gnu/bison/
https://github.com/westes/flex/releases
https://cmake.org/download/
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To access curated hierarchical MSAs (hiMSAs), which are used as queries by our MAPGAPS program,
again log onto the NCBI ftp site, go into the hiMSA directory (cd pub/mmdb/cdd/hiMSA/) and download
the files you require.

You can speed up MAPGAPS searches by running many jobs concurrently over grid nodes, in which case
you will need to first split the nrtx fasta file into subfiles using the command and then combine and merge
the output (cma-formated) files using our tweakcma program with the -m option.

fasplit nrtx 250000 < nrtx

This will create many subfiles, designated as: nrtx.1, nrtx.2, nrtx.3, ..., containing up to 250,000 sequences
each. MAPGAPS searches these files to create input MSAs for analysis by out other programs.

Obtaining structural coordinate (pdb) files. This can be done automatically using our program
get pdb. The command ‘get pdb <infile>’, where <infile> is a fasta file containing pdbaa (fasta)
sequences, returns the corresponding structural coordinate files in pdb format and then adds modeled
hydrogen atoms to the files. Two files will be created for each pdb identifier: the original pdb-formated
file (e.g., pdblabc.ent) and a smaller file that is used by our programs and that includes modeled hydrogen
atoms. This requires that two third-party programs be on your path, namely: batch_download.sh, which
retrieves the files, and reduce, which adds modeled hydrogen atoms. These are available, respectively, at:

https://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script
and https://github.com/rlabduke/reduce.
Our program tweakPDB can be used to further modify or analyze pdb files.

Obtaining an input MSA for analysis by our programs. If you have downloaded an hiMSA curated by
the NCBI CDD group (see above), you can convert this into MAPGAPS-format using the cdd2mgs
program. The output files can then be used to search for and multiply align sequences belonging to the
superfamily modeled by the hiMSA. Alternatively, if no such hiMSA is available, you can use a cma-
formated MSA (obtained using GISMO or another MSA program) to create a hiMSA using the following
steps:

cp <infile>.cma <infile>.tpl

foreach file (SFASTADIR/nrtx.*) mapgaps <infile> file

cat SFASTADIR/nrtx.* map.seq > All

mapgaps <infile> All

mapgaps All_map // creates *mpa and other files

foreach file (SFASTADIR/nrtx.*) mapgaps All map file

mapgaps All_map SFASTADIR/pdbaatx

cat SFASTADIR/pdbaatx A.cma SFASTADIR/nrtx.* A.cma > X.cma

tweakcma X -m // merges the concatenated cma files

tweakcma X.merged -mincol=0.80 // removes sequences fragments

tweakcma X.merged.match80 -U90 // reduces sequence redundancy to < 90% identity
\mv -f tweakcma X.merged.match80.purge90.cma Main.cma

twkcma Main -hsw // creates a Main.hsw file with sequence weights

The resultant Main.cma and Main.hsw files are used as input to the bpps and darc programs. If the input
MSA is in mfasta format, you can use convert_msa (in fa2cma mode) to convert it into cma format.
Currently under development is the LAPIS (Lots of Accurately-aligned Proteins Initiated from Scratch)
program, which performs the above steps automatically starting from a fasta file of sequences belonging to
a given protein superfamily. To heuristically reduce sequence redundancy the faster tweakcma -


https://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script
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cdhit=<int> option may be used. The relative quality of MSAs may be assessed using eCOMPASS. An
input MSA may be modified using the tweakema or edit_cma programs.

Partition the MSA into subgroups based on conserved patterns. Running BPPS 1 globally partitions
an MSA into divergent subgroups based on subgroup-specific patterns. To evaluate consistency between
runs use the BPPS E mode. To expand the alignment within each partition use BPPS 2 and BPPS 3 modes,
which will create a hiMSA of the superfamily. If the input MSA is huge, BPPS can take considerable time,
in which case DARC may be used to create the lineage within an implicit hierarchy for a specific query
sequence. DARC also runs a STARC (DCA) analysis and creates both a SIPRIS (*.sprs) input file and a
*vsi file. SIPRIS identifies and computes the significance of pattern residue structural clusters. The
vsi2Zpml program takes as input a *.vsi file to create PyMOL files to visualize the structural locations of
residue constraints. For both BPPS and DARC a *.terms output file to assess the fasta define terms and
taxonomic information for each partition. (Can also create a terms file using tweakema with the -terms
option.)

Defining and refining models of protein superfamily residue constraints. BPPS creates both a *.hpt file,
describing the partitions and corresponding patterns, and a *.sma file, containing a seed sequence for each
partition. BPPS also has an option (-heatmap) that creates asset of heat map, one for each subgroup showing
the degree to which that subgroup’s pattern is conserved both within that subgroup and withing other
subgroups. Such heat maps may indicate that the hierarchy should be further edited (possibly into a non-
hierarchical ‘hyperpartition’) to model more accurately the constraints imposed on the superfamily. (The
heatmap PyMOL files can reveal whether certain subgroups share constrained residues in a non-hierarchical
manner.) Such editing may be performed using either our edit_hpt program and/or a text editor, such as
vim. Likewise, the corresponding *.sma file may be edited. Given such *.hpt and *.sma files, the BPPS H
mode may be used not only to refine a partition, but—given an input MSA of the same length as the original
MSA—to also update the overall bpps model as addition sequences become available. This allows models
of protein superfamilies to be maintained and refined over time without having to start all over again from
scratch. Of course, high quality hiMSA models may also be used as MAPGAPS queries.

Characterizing residue constraints dynamically. In a cellular context, of course, proteins typically
undergo conformational changes that may not be observed in available structural models. To explore the
dynamic structural properties associated with BPPS-defined residues and high DC-scoring residue pairs
one may perform molecular dynamics simulations on proteins of interest. We typically set up such
simulations using CHARMM-GUI (https://www.charmm-gui.org/ ) and run the simulation using
OpenMM (https://openmm.org/ ). The SPARC program can be used to search the set of simulated (or also
empirical) structures for interactions of interest.

Interpret results in the light of published research. One should read the literature on proteins under
investigation to help interpret results.
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13.Appendix 1: Gibbs Sampler for Multi-alignment Optimization (GISMO)

GISMO.

. . . T T
Notation and Definitions. The following notation is used for vectors v = (vl,...,v ) and W= (wl,...,wn) :

n

V] =|w|+..+

T T y
vl o vEws(v ey, tw,) L v/w=(0/weny,/w,) L V=8 and
F(V)ZF(Vl)---F(Vn). Given K proteins, their sequences are defined by R:(RIT,...,R,€ )T where each
vector R, :(rk’l,...,rk’nk) corresponds to the k-th sequence, n; is the k-th sequence’s length and the 7y,

corresponds to the i-th residue in that sequence. h( ) defines a counting function where, for example,

h(Rk) returns a length 20 vector of the counts for the residue types in Ry.
A block-based alignment of the input sequences is defined by W columns. The set of variables

defining the sequence positions for column j is defined by 4, ={a1, el j} . We define
Aj[—k] EAj—{ak, j} to denote the set Aj without @; ;. An alignment is defined by the matrix
A:(A],...,AW)T and {A} E{ak,j :k:l,..,K,j:l,...,w} denotes the set of residues indices for the
alignment variable A. We represent the collection of residues indexed by elements in a set C as RC . For

instance, R{ N {ak’j k=1,..,K;j= 1,...w} represents the set of residues in the alignment defined by A.

GISMO Statistical Model. The residue frequencies observed for column ¢ are modeled as a multinomial

T
distribution with parameters ec = ((91’6,---, 020,c) where lefl 0..=1land ‘9i,c >0 for all i. That is, the
vector © = (91,...,9W) defines a product multinomial model corresponding to the full alignment. The

vector 00 corresponds to a background amino acid residue distribution. Hence, the complete-data

likelihood function is given by
w1 [ 8 (%)
7(R[0,,0,A)cc 0] ]| -~
-1\ 8
where it is assumed that © ~ D(B) and 0, ~ D(a) (where D denotes the Dirichlet distribution), and
where B = ( Biyeees ,BW) specifies the Dirichlet distribution parameters (commonly interpreted as numbers

of pseudocounts) at each column position j, and a specifies the parameters for the background distribution.

(Recall that the alignment is specified by the matrix A = (A1 ey Aw) = (ak‘ ; )wa where 4, ; indicates the

position of the j-th column, which is assumed to be present in all of the sequences.) The likelihood of A
with the 0°s integrated out is

ﬂ(R|A)ocF(h(R{A}C)+a)-lf!F{h(R{A]_})+Bj}- ()

The conditional predictive probability distribution of this conserved region occurring at position i in
sequence k is given by
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A h(’k,ak'f )

v 0
ﬂ(ak :i‘A[—k]’R)OCH é—(’)

where the 0 are the posterior means of the 0, given the observed sequence data R and the current alignment

A[_ "k This statistical model serves as the foundation for the HMM [10] used in later stages of sampling.

Dirichlet mixture priors. In order to capture the fact that certain biochemically or structurally similar
amino acid residues are more likely to occur together we have incorporated Dirichlet Mixture priors
[102,103], as refined by [104]. In order to speed up sampling, GISMO uses a 20 component mixture in the
first (competitive) phase of sample, inasmuch as the goal is to merely obtain a reasonable starting alignment
without overtraining the evolving HMM. After this initial phase GISMO applies a 58-component mixture.

Down weighting for sequence redundancy. Sequences are down weighted for redundancy using the
following procedure. For each sequence & a non-integer weight is computed using the method of Henikoff
and Henikoff [105] as:

w

wit (k)= Z(th -Nr,. )71

J=1

where Nt ; is  the number of residue types at each position j and where

is the number of sequences with the same residue at position j as for

Nr ;=

<x< =
{raw ‘l <x<KAh Tars =T, }

sequence k. The rational for this formulation is that if a sequence matches lots of sequences at most
positions, then it should receive a lower weight than a sequence that matches few sequences at most
positions. These weights are then normalized and integerized as:

wi (k) =[100-wz(k)+wt,,, |

where WI_ . corresponds to the maximum non-integer sequence weight. Because these weights depend

upon the evolving alignment, they are updated after each sampling cycle.

Inferred HMM transition probabilities. We model the B B0
transition probabilities for the HMM (shown on the right) 3, y a0 @
using a generalization of our previous formulation [10] as , 20
follows. The probability matrix for transitions from column j « ,? A
states in the HMM is: I- "’“D m 1,;050 w

L\ I. D,

J+ J Jt

M, 1-4[j1-6,[7]1 lj1 &,/]
Lo 1=l w0

D, 1-6,[/] 0 4[/]

where 1 <j < w and where M, I, and D denote match, insertion and deletion states, respectively. The
probability matrix for transitions out of the start state is:

M, D,
Start 1-0,[0] J,[0]
Transitions into M and I states emit a residue as specified by the ® of our statistical model.
Inference of transition probabilities. For a given alignment A, each sequence Sf is associated with a
“path” through the HMM indicating its alignment against the model ® . We denote the collection of these
paths by A and the total number of HMM transitions of type M—M, M—1 , ..., D—>D at position j by
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N1, Nylils Noyglils NiLJ1 Nilil Ny [71 and Ny, [J].

Ignoring the indexing variable j for clarity, the likelihood of the transition probability parameters at each
position is
h(A[1,8)=A~1,=8) " "8 (1=1,) g (1=8,) " 5.
with independent prior distributions
t,,0,,1-1,=8,)~ D(n,,,n,,,n,.), t, ~Beta(n,,n,), and &, ~ Beta(n,,,n,,)
s Ty Ty, 3Ty o, AT€ correspondmg prior pseudo counts. The corresponding maximum a

u’

where . n

md >
posteriori probability (MAP) estimates for the transition probabilities at each position j are computed from
these observed and prior counts. These define the position specific gap penalties. The joint posterior
distribution for the alignment and transition probability parameters is

2(A,A,T,8) ¢ P(R|A,A)xh(A|T,8)x P(T,8)
where P(R| A, A) is a generalization of Equation (1), and where 1 and § are length w vectors representing
the column-specific transition probabilities with prior probability:
P(1,8)=[D(n,,,n )x Beta(n,,n,,)x Beta(n,,,n,,)]"

Given the alignment and thus the paths A, we have the conditional posterior distribution

p(l 6 | A A) o H|: ]] il =1 50 [‘].]Nyn1l[j]+”n1{]71 ) (1 — _50 [j])Nmm[j]+nmm—l %

R T e Vi RNV e
Sampling on the distribution for each position j is done by drawing the random variables:
0, [j]~Beta(de [j]+nmd,Nmm [j]+ i []]+n +n),
S, [7]~Beta(Nyy [ 7]+ 1aas Naw [ 7]+ 70) >
,[i]=a=6,[iDu/] where 1, [j]~Beta(N,, [ j]+ 7,00 N [ 7]+ 1) >
and ; [ ]~ Beta(N, [ ]+ 7,5 N, [ 7]+ 7) -
For computational efficiency, the 1 and 6 may be integrated out [10] to get

h(A) = jj h(A |,8)P(i,8)didd

—H C(N,, [ 7]+ 1,0 (N, [ 7]+ 2D (N, [7]+ 7T (11,
L(N,.[j]+1,)T(n,)C(n,,)T(n,,)

m-

mi > md’ mm i zm

Xr(N[ J]+n )TN, [ j]+n,)C(n,)
(N, [j]+ N, [j]+n)0 () (n,,)

y (N, [J]+ndd)F(Nd [ ]+ndm)r(nd )
L(N, []] +N,, []] +n, ) (n,, ) (n,,)
This gives rise to a new posterior distribution g(A,A) o« P(R|A,A)xh(A), for which the transition

probability parameters need not be fixed or updated and which allows the optimal indel penalties to be
determined from the sequence data.

Sampling algorithm. GISMO’s MCMC sampling algorithm explores the space of possible alignments
by executing Markovian transitions between alignments. This involves sampling alternative alignments of
either individual sequences or groups of sequences. In either case, such sampling is done as follows: First,
the sequence or sequences are removed from the alignment and the posterior parameters of the HMM are
recalculated based on the retained aligned sequences and the priors. Next, emission probabilities for the
twenty amino acids at each position are sampled from the posterior emission probability distributions
defined by the HMM parameters; note that these sampled probabilities define a sampled HMM. Finally,
the previously removed sequences are optimally realigned to the sampled HMM. We explored sampling
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transition probabilities in the same way, but found little benefit of doing so; instead, the MAP estimates for
transition probabilities are used. GISMO applies simulated annealing [21] to favor convergence on an
optimal alignment in later stages of sampling. Sampling starts at a “temperature” of 7= 1 (i.e., sample each
transition directly proportional to its actual probability p) and ends at 7= 0 (i.e., always take the highest
probability transition); between these two extremes the temperature is dropped in 47 = 0.1 increments with

1
% . Sampling iteratively through all of the sequences continues until this
fails to find a new highest probability state.

sampling probabilities set to p
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14.Appendix 2: Bayesian Partitioning with Pattern Selection (BPPS)

Bayesian Partitioning with Pattern Selection (BPPS). Given a typically very large multiple sequence

alignment (MSA), denoted here as X, BPPS applies Markov chain Monte Carlo (MCMC) sampling to
articulate a superfamily into a set of hierarchically nested partitions corresponding to a tree. Each subtree
h, which may consist of only a single node, when attached to the root corresponds to a family, and, in
general, when attached to a parent node corresponds to a child subgroup. The sampler defines each
subgroup, also denoted by /4, based on residue patterns distinguishing subgroup members from sequences
assigned to other nodes in the parent subtree. For instance, a simple pattern for subgroup # might consist

of {V,I,L} , {D,E} , and {F,Y} at column positions 3, 10 and 23, respectively. BPPS favors assignment of

those sequences to subtree 4 conserving a pattern that is not conserved in sequences assigned to other nodes
in the parent subtree. Hence, BPPS favors assignment to each parent node those sequences conserving the
parent node’s pattern but lacking each of the descendent nodes’ patterns. For a non-root node # in the
hierarchy this process defines a ‘contrast’ alignment (as in Fig. 6.2C,D) divided into foreground and
background sequences, corresponding respectively to the subtree rooted at n and to the rest of the subtree
rooted at the parent of n. MCMC sampling is used to determine the number and arrangement of the nodes
in the tree, the sequences belonging to each node, the pattern positions for each subgroup, and the conserved
residues at each pattern position. The sampler favors convergence on a hierarchy where the pattern defining
the partitioning for each node best distinguishes its foreground from its background. BPPS weights
sequences, as in PSI-BLAST[105,106], to avoid modeling conserved patterns merely due to sequence
redundancy.

For the ensuing discussion, we define the following: For vectors v = (vl,...,vé )T and W= (wl,...,wﬁ )T ,
VW= (v /Wy, /) L VAW = (v 4wy +w,) , logv = (logv,,..,logy, ) |V| is the sum over

vector elements, and <V,W> denotes the inner product of v and w and is equivalent, as applied here, to the
‘

dot product V- W = Z V.W; . Given an N node hierarchy H , we define S as a vector of N disjoint sets, such
i=1

that Sn contains the sequences assigned to node 7, and H is defined as a vector of tri-partitions of node
indices 1<n<N,suchthat H, = <H L H,  H ;> specifies subtree /’s foreground, background and “non-

participating” nodes, respectively. We define node n» = 1 as the root and /2 = 1 as the superfamily tree (i.e.,
H = {n [1<n<N } ), for which the background set (H, = {0}) consists of a single node (n = 0) for

unrelated sequences (denoted as Sp). The remaining H ;, are configured hierarchically starting from the
root, such that: /1 ; specifies the nodes in subtree ; H , specifies the nodes in the tree rooted at the parent
node of % but absent from /1 ; ; and H; specifies nodes in neither /1 ; nor 1, . To ensure that H
corresponds to a tree, we require that each /1 ., other than H ]+ , is a proper subset of only one other /7 ;
(ie., Vh2h>1—>3!hliH;CH;) and that f, consist of nodes in H; that are not in H;
(ie. H, =H}-H}).

BPPS defines a prior on H that depends only on N and positive parameter v and that assumes a
maximum number of nodes Nuax, so that
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N-1 N :
) v =v) /=y if v ]
H)= h N)=
p( ) a,  WHETE p( ) l/NmaX it v=1l’

and where @y, the number of unlabeled, unordered rooted trees with N nodes, is defined recursively as:

1 if N=1

ay = 3 H(ak”" j it N>1

Q2+ +(]1V Djya k=1

with J « being the number of subtrees with £ nodes [107]. Computation suggests that the growth of @y is
0(2.96N). By default, N, = 500 and v =1 so that p(H) = (aNN )_1, which corresponds to a

max

uniform prior where every size tree (up to Nma) is equally likely. Setting v >1 or v <1 favors
hierarchies with more or fewer nodes, respectively. Note, however, that adding nodes when unjustified by

the data is disfavored regardless of p(H) due to the nature of our Bayesian formulation.

Let O, be the prior for a sequence assigned to node n. Given N, the prior for S is then given by
s
S) = H o L ”‘. By default, we choose a prior for the rejected sequence node of O = 0.5 and for other

nodes 0, = (1 -0, ) - N~ uniformly.
Given H and S, foreground pattern residue sets are denoted by A , where Ah,c #(J for each pattern
column position ¢ in subgroup 4, and Ah,c = for non-pattern positions. The pattern residue sets Ah are

constrained by a foreground consensus sequence for subgroup % , denoted as ¥, , and by the requirement

that the residues in each set be functionally similar, as were defined by a detailed analysis of amino acid
Dirichlet mixture components[104]. For example, if a tryptophan residue occurs at position ¢ of the

consensus for H, , then Ve = W and
AW) = {{W},{WF}{W,Y}{WEY!} and 4,, € AW)U{D},

where A (I”) denotes the allowed pattern residue sets for consensus residue . We define prior probabilities

N C
for A as p(A) :HH'O 4, (product categorical distributions), where, when 4, = D, Py =g
h=1 c=1 ‘

(0.999 by default) and otherwise p, =K- . Here, « is a constant chosen so that the priors for

J4.]

pattern positions sum to 1- qy; 0< g <1 (and 0.5 by default) is a tuning parameter with smaller values

yielding higher aggregate priors for the class of “functional” residue sets of smaller cardinality ‘Ah’c ; and

”Ah,C , to distribute prior

probabilities uniformly among these sets. For example, if V) . = W and 4,.= {W,F} , then ”Ah,c” =2

because, in this case, there are two possible sets of cardinality 2.



Neuwald 42

Since we are interested only in whether a residue in column ¢ of a sequence s (i.e., x;) is functional or
non-functional, we introduce the variable ), where y, . = (1, O)T and ¥, . = (0,1)T imply that, for
subtree A, x;. corresponds to a ‘functional’ and a ‘non-functional’ pseudo-residue, respectively. Since
Ah’c = at non-pattern columns, corresponding residues are all non-functional. Gaps are also treated as
non-functional.

Given H, S and A, let 0 nc be the 2-dimensional vector specifying the observed functional and non-
functional pseudo-residue background frequencies for column ¢ of subtree %, and let @ be the matrix of
all O, .. Let 9510’; ) = (1-a,)0,. +a, (1,0)T model the foreground composition where 1—a specifies
the fraction of background ‘contamination’ at pattern positions in the foreground. The prior probability

density for &, is defined by a beta distribution

_ (ah0+b ) ano-l (1 \bhool
p(ah)_r(ah,o)r(bh,o)ah (1 ah) ,

where @, , and bh,o are functional and non-functional pseudo-counts, respectively, and where by default

o = bh,O =1. The prior probability density for 0 n.c 18 defined by a product Beta distribution:
a + b a1 bl

HH hCth(’Z’

=1 c=1

where C is the number of columns in the MSA, and a=b=1 by default.

Conditional on H, y and S, let &, nc denote the inferred number of functional pseudo-residues in column

¢ of subtree / that are not due to background contamination. Then, conditional on @, and 0 heo

&,
+(1-2,)0,., )

where 9}%1 and NN fh,c are, respectively, the background frequency and the total foreground number (with

¢ . la,,0, ~Binom th’c,

background contamination included) of the pattern-matching pseudo-residues in column ¢ for subtree 4.
Conditional on H, %, S, &, = (5;.,1’-",9811@ )T ,and Nf, = Zcthc , the posterior distribution of &), is

I:ah |&-:h:| o al‘/l‘:h‘+a/,,0’1 (1 ~a, )th.*\§h\+hh_ofl — Beta (|§h | + a, o, Nﬁ _ |§h | 4 bhio) .

The conditional distribution for 0 he 18

H,S,E,,x, ~ Beta z Z Xiser T th,c - é:h,c Ty, z Z Xnse2 TV |,

neHj, s€S, neH, VH; s€S,

0h,c

where y = (a,b)T specifies pseudo-counts with y = (1, I)T by default.

The sampler infers H,S, A, a,and @ from X, which defines an MSA. Given these variables, the
logarithm of the joint probability distribution[22] is defined as:

log P(X,H,S,A,0,0) =log P(X|H,S,A,a,0)+log p(H)+log p(S)
+log p(A)+log p(a)+log p(O)

(M
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where, assuming statistical independence among subtrees (but see below),

( )

N
logP(X|H.S,A,0,0)=)| Y zz<log9hc,xh”>+ > ZZIAI ,xh’s’c )
h=1 neH, UH, se§, c=1 nEHh seS, c=1
0, if 4, =0

and where I, s{ Note that for non-pattern positions 0, Z(O,I)T and

L if 4, =@

Xhse = (0, I)T so that <10g 0,. ,xsc> =1log0-0+logl-1=0; hence, these positions contribute nothing to the

posterior probability. However, because the configuration of each subtree constrains to some degree the
possible configurations of other subtrees above or below it in the hierarchy, our independence assumption
is invalid. These constraints reduce the probabilities for some states to zero, so that the probabilities
assigned to the remaining, reachable states will sum to less than 1, and our formulation is therefore
conservative (i.e., computed probabilities are smaller than they should be). This also occurs due to other
imposed constraints, such as placing an upper bound on the number of pattern positions or on the depth of
the hierarchy, or requiring that a minimum number of sequences be assigned to each node. Nevertheless,
in searching for an optimum, Equation 1 is valid as an objective function, its use here.

BPPS sampling strategies. Conditioned on fixed H, BPPS samples over S and A by iteratively applying

the following. For each sequence s, let n be its assigned node and remove s from Sn . Then, sample s to a

new node n’ with probability proportional to P(X,H,S,A,a,®|s € Sn,) after having updated @ and
a. Likewise, for each column position ¢ in each subtree /2, remove the pattern set Ah,c and sample in a new
pattern set 4; . € A(y, ) U{@} with probability proportional to P(X, H,S,A,a,@|Ah’c = A;',,c) after

having updated y, @ and (.. However, if the number of pattern positions for a given subtree 4 is greater
than a specified maximum Cpnax (25 by default), reduce the number down to Cmax by removing the lowest
probability pattern positions.

The BPPS sampler is initialized by setting N =1 with H, =(H, ={1},H, ={0},H; =@), and
assigning all sequences to the root node (7 =1) with Ciax pattern positions for subtree 7 =1 and with
background pseudo-residue frequencies at each position (the 90,6) derived from the overall residue
frequencies for the entire MSA. At this stage, sampling over S merely involves iteratively assigning
sequences either to the foreground (Sl) or to the background (So ) , where the background represents

unrelated sequences inadvertently included in the alignment. Sampling over A generally tweaks pattern
assignments slightly due to removal of unrelated sequences. This provides a good starting point to speed
up convergence with essentially no risk of getting trapped in a suboptimal state. Convergence is defined
by a cycle of sampling over S and A that fails to improve upon the best configuration found thus far, as
defined by the log-probability (Equation 1). BPPS saves the best configuration for the final output.

After convergence with N = 1 nodes, a child node may be added to the root node, as follows. First,
some of the sequences assigned to the root are reassigned to the child node by selecting a subset of
sequences that are more similar to each other than they are to the remaining sequences. Selections are based
on similarity to the query, when one is designated, and on similarity to an arbitrary sequence otherwise.
Next, BPPS samples for a few cycles over S and A, as described above, to search for a configuration that
improves upon the previous hierarchy based on Equation 1. If the hierarchy fails to improve and a query
has not been provided, several other candidate queries may be selected in turn until either an improved state
is found or until a prespecified number of attempts are tried. If the hierarchy is improved, BPPS further
enlarges and rearranges the evolving hierarchy H by adding more leaf nodes and by deleting, inserting or
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moving nodes using this same basic strategy. To avoid excessively complex hierarchies, BPPS requires
that each leaf node contain a minimum number of sequences (50 by default); those that do not are pruned.
After convergence, the sampler applies simulated annealing[21] to ‘drop into’ a more nearly optimal
configuration.

When DARC applies BPPS, it focuses on the query’s lineage within the superfamily hierarchy by first
defining the query’s family based on residues that most distinguish family members from other superfamily
members. Next, DARC seeks to recursively define, in a similar manner, the query’s subfamily, and other
subgroups further down the query’s lineage to a prespecified maximum depth.



Neuwald 45

15.Appendix 3: Direct Coupling Analysis (DCA)

Direct Coupling Analysis (DCA). DARC performs DCA using the algorithm implemented in the
CCMpred program version 0.3.2 (https:/travis-ci.org/soedinglab/CCMpred)[75], which is essentially
identical to the plmDCA[64] and GREMLIN][108] algorithms and which we modified to output DCA scores
in PSICOV format. Our description here follows closely the one given for CCMpred[75]. The rationale
behind DCA is that, over evolutionary time, mutations at a given residue position are compensated for by
mutations at interacting positions to thereby maintain structural integrity. DCA works by avoiding the
confounding effect of indirect correlations due, for example, to two residues both interacting with a third
residue, but not with each other. DARC uses the sub-MSA defined by BPPS to compute the highest scoring
directly coupled residue pairs (DC-pairs).

The CCMpred algorithm eliminates indirect interactions from an interaction network by inferring a
generative model of the MSA based on a Markov Random Field (MRF). We again represent the input
MSA as an R row x C column matrix X, where element X, . corresponds to the residue in row (i.e.,

sequence) s and column ¢. The columns correspond to vertices of the MRF with single-residue emission

potentials Ec(l’) for amino acid residue re{l,...,ZO} in column ¢; covariation between columns

corresponds to edges of the MRF with pairwise emission potentials &, , (I”C,Vd) for residues 7. and ry in

columns ¢ and d, respectively. In theory, one could optimize the parameters of the MRF given the MSA
using as the objective function the probability:

1 R C C
P(8|X):EHH exp gc(xs’c)+zgc’d (xs’c,xs’d)

where Z is a normalization constant to ensure that the sum over all sequences equals 1. However, because

computing P (£|X) is intractable for a non-trivial MSA, the following pseudo-log-likelihood is used

instead as the objective function:

R C C
plL(£|X)=zz gc(xu)+256,d(xsc, ) logZ_,

s=1 c=1 d=1

C

where Z Zexp g, Z ( )

Because computation of the normalization constants Z

involve summing over only C terms, these are
much faster to compute than Z for P (a |X) . The gradient (the vector of partial derivatives) of this pseudo-

log-likelihood is given by:

oplL |X R 1 C
68 E ) Z —Zexp g(y,(r)+;6‘i’c(r x“)

i[é‘xsyd,r':l[é‘x&“r _p(xx,c = r|('xs,l""’xs,cfl’xs,cdrl" -5 X eV, E)):|

s=1


https://travis-ci.org/soedinglab/CCMpred
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where 5x, , 18 the Kronecker delta function.
In order to favor sparse solutions, we add an L, regularization term R(S) and maximize

plL (s |X) —R (8) using the nonlinear conjugate gradient method where
c

R (8) = /l’single Z

c=1

where the regularization coefficients are Asingle = 15 Apair = 0.2 X (L - 1) [108], and where ||VC ||2 and|

2
2 + ﬂ‘pair

8C

C 2
9
d

gc,d |

c,d=1
d+#c

|2

E d
ed|la
are the sum of squared residuals, which measure the discrepancy between the model and the data (with

smaller values indicating a tighter fit of the model to the data).

After a successful optimization, the couplings between residue positions KC’d are ranked by the

Frobenius norms of the edge potentials &, ;:

20 5
Kc,d = Z EC,d (I", I’")
=1

Lastly, an Average Product Correction[109] is applied to arrive at the final score:

é/cd :ch _%
i ’ K.,.

where "." denotes averaging over the corresponding row or column and K is the average over all matrix

elements.

Evaluating the robustness of DCA score rankings. To determine whether different input MSAs rank DC-
pairs consistently, an auxiliary subsampling routine is included as an option in DARC. For the analysis
here, this routine draws from the input MSA 1,000 samples of 1,000 sequences, from each of which DCA
scores are computed. Between samplings, the previously sampled sequences are replaced prior to sampling
the subsequent set. The percentage of times that each residue pair was among those with the top 20, 10, 5
or 2 DC-pairs is given in an output table. Those pairs consistently selected among the 20 top scores are
also output.



Neuwald 47

16. Appendix 4: Initial Cluster Analysis (ICA)

Initial Cluster Analysis (ICA). To compute ¢zSp, 30Spc, 30Sp, or pcSp (denoted generically here as S) we
apply Initial Cluster Analysis[110], a statistical approach to address the following question: Consider an
array of Os and 1s of length L and containing D 1s. Are some or all of the 1s significantly clustered near
the start of the array, and, if so, how surprising is the most significant such clustering? To make this
determination, ICA applies the Minimum Description Length (MDL) principle[111], an information
theoretical regularization method for finding the best hypothesis for a given set of data.

The MDL principle defines a theory 6 as a probability distribution Rg over all possible sets of data and
the description length of a data set £ given a theory 6 as DL(E |9) = —log(Pg (E )) A model M is a
parameterized set of theories, and the description length of E given M is defined as

DL(E |./\/l) =min,_, DL(E |9) . The MDL principle asserts that among multiple models to explain £,
one should prefer the model M that minimizes DL (E |./\/l) +COMP (./\/l) , where the description length

or complexity COMP(M) is the log of the number of effectively independent theories M contains. For
ICA, the MDL principle determines whether the hypothesis H; that the 1s cluster near the start of the
sequence is better than the null hypothesis H) that the 1s and Os occur randomly.

ICA treats H: as a single-parameter model, whose parameter x describes the location of a cut at a
discrete point from 1 to L —1 along the array, thereby dividing it into an initial segment s; of length x, and

a terminal segment s2 of length y = L — x . If 51 contains D; 1s, and s> contains D2 =D _Dl Is, assume
that s is generated by Bernoulli trials with maximum-likelihood probability F} = D, / X foral, and s; is

generated by Bernoulli trials with probability PZ = D2 / )Y for a 1. Given a particular fixed value for x, the
probability of Eis P.(E)=PR"' (1-F)

h P (1 -P, )kD2 / Z ,where Z is a normalization constant taken

over all length L sequences having D 1s. Hence the description length of E under H; is
DL(S|H1) = —log(max)C P (E)) ICA computes the complexity of H;, as

COMP(H,) zlog(m%)

ICA treats Ho as a model consisting of a single Bernoulli-trial theory for generating £, with the probability
of a 1 taken as P:D/L, and of a 0 as Q =1— P . Hence, DL(E|H0):—10g(PDQL_D), which is L
times the entropy of the Bernoulli trial. Because H, contains only one theory, its complexity is zero. The

MDL principle says that we should prefer H; to Ho when DL(E |’H,) + COMP('HI) < DL(E |’H0)

Treating each hypothesis as equally likely a priori, we may view the difference A between the two sides of

A
e

this inequality as a log-odds ratio, and use the logistic function + to convert this into a p-value (see p.
+e

37 of [112]), from which S =-log,, (p) is defined.



Neuwald 48

17.Appendix 5: Structurally Interacting Pattern Residues’ Inferred
Significance (SIPRIS)

SIPRIS. SIPRIS relies on Initial Cluster Analysis (ICA), as described in Appendix 4 and which addresses
the following questions: Consider a string of Os and 1s of length L and containing D 1s. Are some or all of
the 1s significantly clustered near the start of the sequence, and, if so, how surprising is the most significant

such clustering? Here we focus on the statistical and information theoretical bases of ICA as applied to
BPPS-SIPRIS analyses.

BPPS-defined residue sets. Modes 2-3 of BPPS generate a hiMSA (Fig. 6.1). For each subgroup (i.e.,
subtree) G within a hierarchy, BPPS defines a corresponding set of “discriminating” residues that most
distinguish members of that subgroup from closely related subgroups. This set is ordered from the most to
the least distinguishing residues. We assume that these residues are likely responsible for functions specific
to subgroup G. Although such a set typically includes residues with well-characterized functions, our focus
is on residues of unknown functional relevance. When mapped to available structures, these distinguishing
residues may readily suggest plausible hypotheses; in this respect, a BPPS analysis is informative by itself.
However, SIPRIS can obtain deeper insight into and corroboration of a BPPS analysis by identifying
significant overlap between BPPS-defined discriminating residues and structurally defined residue sets; we
term the intersection of two such sets a BPPS-SIPRIS cluster. SIPRIS analysis was motivated, in part, by
Karlin and Zhu’s approach [113] for identifying significant clusters of residues that share physical-chemical
properties.

BPPS-SIPRIS predefined clusters. The simplest BPPS-SIPRIS analysis is based on a specific, predefined
structural cluster of n residues. This corresponds to a ball-in-urn problem, in which the BPPS-defined
distinguishing residues correspond to N, red balls, the remaining residues to NV, black balls, and the cluster
to n balls drawn from the urn. The probability that at least x of the » residues are distinguishing (i.e., are
“red”) is given by the cumulative hypergeometric distribution:

min(n,N,) N N N N
o )
i=max(x,n—N;) 1 n—i n

BPPS-SIPRIS optimized-clusters. Similar to BPPS-predefined clustering is choosing the optimal BPPS-
structural cluster among various alternatives. To construct these, we start from a well-defined position in
space, and sequentially add “structurally-adjacent” residues (variously defined, as described in Results) to
generate a set of nested, structurally defined clusters. From this nested set, we select the structural cluster
that optimally overlaps with the BPPS-defined residue set by applying the Minimum Description Length
(MDL) principle [111], as described in the next section. Optimizing over different starting residues, or
different numbers of discriminating residues, requires further p-value adjustment, for which we currently
apply the overly-conservative Bonferroni correction to obtain an upper bound.

The MDL principle. To avoid overfitting BPPS-SIPRIS statistical models to observed data, we apply the
MDL principle [111], which can be understood as formalizing Occam's Razor (“a model should not be
needlessly complex”). Conceptually, this principle claims that the best among a set of alternative models
is that which minimizes the description length of the model, plus the maximum-likelihood description
length of the data given the model. This approach accounts for the implicit number of independent tests
performed when optimizing the parameters of a model, and strikes a balance between a model's complexity
and its ability to fit the data—in our case to describe biologically relevant amino acid residue patterns.
More formally, a theory is a probability distribution over all possible sets of data, and a model is a
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parameterized set of theories. The description length of the data D given a model M, is then defined by
DL(D|M) = -log P(D|T), where T is maximum-likelihood theory contained in M (i.e. the theory which yields
the greatest probability for D). The description length of the model M is defined by DL(M) = log(N), where
N is the number of the effectively distinct theories (i.e. parameter settings) M accommodates [111]. The
MDL principle aims to minimize DL(D|M) + DL(M).

MDL applied to BPPS-SIPRIS clustering. BPPS-optimized clustering presents several mathematical
challenges. Computing valid p-values requires adjusting for the multiple tests implicit in optimizing over
starting residues and clusters. Also, this optimization itself may carry an implicit bias favoring small or
large clusters, as outlined below.

We start with a null model in which discriminating residues (e.g., defined by BPPS) are distributed
randomly throughout an entire sequence. Given a fixed number of discriminating residues, this model yields
a uniform likelihood for all sets of data, and serves as a basis of comparison for likelihoods generated by
an alternative model. This model divides the sequence into an initial segment of length x (which we refer
to as a cluster) having m discriminating residues, and a terminal segment of length y having n discriminating
residues. The model assumes discriminating residues are generated with different probabilities in the initial
and terminal segments, and its maximum-likelihood theory assigns the likelihood

p=(m/x)"((x-m)/x)"(n/y)" ((y-n)/y)" to the data. For a particular cut-point x, this likelihood

requires choosing the discriminating-residue probabilities m/x and n/y for the initial and terminal segments,
and is easily normalized for the selection of these parameters. Our aim, however, is to pick the x (i.e.,
cluster) that yields the greatest likelihood for the data. Applying the MDL principle requires calculating the
effective number of independent tests N implicit in choosing x [110]. By treating x as a continuous as
opposed to a discrete parameter, we are able to calculate its Fisher information [110], and thus N.

One subtlety is that simply choosing the cut point x yielding the greatest likelihood implicitly favors
low or high values of x. This occurs because the Fisher information is greater at extreme values of x,
implying that the likelihoods are more independent of one another at those values. Empirical analyses show
that this bias toward large and small clusters often yields suboptimal results from a biological perspective.
However, by adding an x-dependent correction, derived from the Fisher information, to our optimization,
we may flatten the implicit prior associated with x [110]. Random simulation shows that analytic p-values
computed using our approach fall within about 20% of empirical p-values. We still need to adjust these p-
values for clusters found using different starting residues. Absent a better approach, we currently apply the
simple but overly conservative Bonferroni correction [114].
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18. Appendix 6: Statistical Tool for Analysis of Residue Couplings (STARC)

DCA and 3D contacts concurrence scores (3p8pc). The 3pSpc-scores apply ICA[110] to measure, as the
—log,, ( p) , the statistical significance of the correspondence between pairwise structural interactions and

DC scores. Given an array of residue pairs ordered by their DC scores, we ask how well it agrees with an
alternative ordering based on 3D pairwise distances. More specifically, we seek to identify an optimal initial
cluster of elements of the array (defined by a cut), as measured by a relevant p-value. We are given an
array of L residue pairs ordered by their DC-scores. D of the pairs (denoted by ‘1°s) are separated within a
reference 3D structure by <z A (with z = 3.5 A by default) and L - D (denoted by '0's) are not.

We ask: what initial cluster, consisting of pairs up to and including a cut point X, contains the most
surprising number d of 'l's, and what is its probability of occurring by chance? (We term the d Is in an
initial cluster “left-distinguished pairs.”) For L = 18 and D = 7, for example, one such array is
“101101100000010001, with optimal cut point X = 7 (underlined), yielding d = 5. Since the pairs are
ranked by pairwise distance, we might then represent our example array as “401603200000070005” with
digits > 0 denoting the ranks of distinguished pairs. ICA ignores these ranks when choosing the optimal
X, whereas we would prefer the d distinguished pairs to the left of X to have superior ranks (i.e., lower
numbers) than those to the right.

To generalize ICA to exploit ranking information we incorporate a ball-in-urn model to calculate a
ranking specific p-value P,. For a specific cut point X that yields d left-distinguished pairs, we imagine
first coloring red, among all D distinguished pairs, those d pairs with the smallest pairwise distances; and
then recording the number R that are red among the left-distinguished pairs. Ideally, all the left-
distinguished pairs will outrank the remaining distinguished pairs, yielding R = d, but more generally higher
values of R are better; in the example of the previous paragraph, D=7, d =5 and R =4. Given the null
hypothesis that rankings are random, we may then use the cumulative hypergeometric distribution to
calculate the probability P that > R of the left-distinguished pairs are red:

= b | 5

This corresponds to drawing d balls from an urn containing D balls, of which d are red; note that the number
of balls drawn here equals the number colored red. A low value of Py is reported for a cut with a surprising
number, among its d left-distinguished pairs, having the d smallest pairwise distances.

Before it corrects for having optimized over all possible cuts, ICA can be understood as calculating a

p-value BI for finding d distinguished pairs to the left of a cut point X. Because the calculation of Pa
ignores ranking information, it will be independent of Pb , and these two p-values may therefore be

combined to yield a joint p-value PJ [115-117] using the formula
P,=PF(1-mPR).

Low values of PJ may arise from low values of Pa , Or Pb , or of both. PJ can provide a statistically
stronger measure of the congruence of two orderings, here derived from DC scores and 3D distances, than

does Pa alone. The p-values P we report in this paper correspond to PJ , after it has been corrected for

optimization over the multiple cut points X considered[110].

For homomeric structures, DARC assesses the correspondence, not only between DCA scores and
internal 3D-contacts alone (e.g., labeled as ‘A’ for chain A), but also between DCA scores and both infternal
and adjacent subunit interface 3D-contacts (e.g., labeled as ‘A:B’ for chain A and adjacent chain B). The
change in 3pSpc upon inclusion of interface contacts is denoted as ASpc. High positive values for ASpc
suggest that strong selective pressures are maintaining 3D contacts between adjacent subunits. In contrast,
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negative values for AS suggest that subunit interactions may be functionally insignificant and perhaps due
to a crystallographic artifact.

BPPS and DCA or 3D contact concurrence scores (paSp, 308r). DARC provides a measure of statistical
significance (based on ICA) for the concurrence between pairs of BPPS-defined residues and either the
highest scoring DC pairs or the closest 3D-contacts. The overlap between BPPS and DCA[74] assessed in
this way is often weak. Hence, DCA and BPPS are often complementary, so that combining both analyses
often provides deeper insight into the relationship between protein structure and function.

Pattern residue 3D-clustering significance scores (cz.Sp). DARC applies ICA to estimate constraints
tending to cluster BPPS-defined residues structurally[74]. The L positions of the ICA array correspond to
the L residues within a 3D structure of the DARC query protein or of other proteins belonging to the query
family. The 1s in the array correspond to a fixed number of BPPS-defined pattern residues and the Os to
the remaining residues. DARC orders array elements based on their 3D distance from a starting residue. It
then determines the most significant 3D-cluster of these residues among a nested set of clusters, each
centered on the starting residue. This is performed, starting with each of the BPPS-defined residues in turn,
and the highest scoring 3D-cluster among these is reported along with the starting residue and the
corresponding czSp-score. The ¢.Spscore measures the significance of the intersection between a 3D cluster
and the BPPS residue set. In addition to the strategy just described (termed “spherical expansion”), DARC
allows either core expansion or hydrogen-bond-network expansion[74]. Core expansion sequentially adds
the residue closest to a residue within the cluster’s “core”. This core is defined as the starting residue R plus
all cluster residues whose distance to their k™ closest cluster residue is less than R’s distance to its X closest
cluster residue (with &=7 by default; this was selected empirically to avoid both spherical- and tentacle-
shaped clusters.) In this case, the cluster typically expands less symmetrically. Hydrogen-bond-network
expansion sequentially adds a residue forming the closest sidechain-to-sidechain or sidechain-to-backbone
hydrogen bond with a cluster residue.
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19.Appendix 7: Contrast alignments for bacterial clamp loader subunits.
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Figure 19.1. DARC-generated alignments highlighting all residues conserved in y and &’ clamp loader proteins and residues
distinctive of the AAA+ superfamily, of the y + &° subgroup, and of y but not §’. These are shown using five versions of the
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same representative set of y proteins (in panels A-E) and of 8’ proteins (in panels A-C). Residues are highlighted to indicate
amino acid biochemical properties based on the following color code: red font with yellow highlight, non-polar (AVILMWEFY) ;
blue font with yellow highlight, cysteine (C); red, acidic (DE); cyan, basic (KR); magenta, polar (STNQ); green, glycine (G);
blue, histidine (H); black, proline (P). Non-conserved positions in panels A and D and non-pattern residues in panels B,C and E
are shown in gray font. The leftmost columns in panels B,C and E give the NCBI sequence identifiers; these are colored the
same as the residue sidechains in Figure 9.1. A. Alignment highlighting all y + &’ conserved residues. Those sequences above
the line within the alignment correspond to representative y proteins from the (distinct) phyla denoted in the leftmost column; the
first sequence corresponds to the E. coli y subunit (pdb_id: 3gIfB). Those sequences below the line correspond to representative
&’ proteins from distinct phyla, the first sequence of which corrsponds to the E. coli §” subunit (pdb_id: 3gIfE), which was used
as the DARC query. The positions listed at the bottom correspond to the E. coli y subunit. B. BPPS contrast alignment showing
the same sequences as in panel (a), but highlighting only those residues most distinctive of the AAA+ superfamily. The heights
of the red bars above each highlighted column estimate the selective pressure imposed on pattern residues at that position using a
semi-logarithmic scale. Directly below the aligned sequences, the characteristic AAA+ residues at each position are shown and,
directly below these, corresponding frequencies are given in integer tenths; a 7°, for example, indicates that the corresponding
residue occurs in 70-80% of the 452,949 AAA+ sequences in the alignment. Below this is shown the residue positions and
sequence of the E. coli y subunit (with the Thr 165 residue that was mutated to Val highlighted in red), and shown below these
are predicted secondary structure elements (symbol: H, helix; E, strand), helix and strand designations, and AAA+ structural
motifs (red font) and putative clamp binding loops C1 and C2 (green font). Secondary structure assignments were calculated for
the E. coli y subunit using DSSP {PMID 6667333}. C. BPPS contrast using the same format as in panel B to highlight those
residues that most distinguish y and § subunits from other AAA+ proteins. D. DARC-generated alignment highlighting all
residues conserved in y. E. DARC-generated alignment highlighting residues distinguishing y subunits from &’ subunits. A few
of these are conserved in other catalytically active AAA+ ATPases; see panel B.
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NOTES:

RtcR bEBP: CAREF relaces the receiver domain.
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