Abstract

Recent studies have shown that SMRT sequencing by Pacific Biosciences is a rapid, effective, and highly accurate platform for generation of complet
microbial genome sequences. As early-adopters of the RS II sequence upgrade, we conducted an extensive and broad comparison to evaluate the new platform and chemistries for simultaneous generation of complete or nearly complete microbial genome sequences and anallysis of epigenetic base modifications. Comparing more than 120 bacterial genomes from more than 16
species ranging in genome size from 900 Kbp to 7 Mbp and in GC-content from $30.2 \%-64.3 \%$, we generated complete genome sequences at twice the rate for isolates sequenced on RS II compared to isolates sequenced on RS. Overall, when combined with longer insert libraries and rigid size-selection using the Blue Pippin by Sage Science, the RS In upgrade yielded an increase in mean read length and tripling of total per-SMRTcell yield. This significant increase in rea
length and throughput has enabled more rapid and efficient generation of finished microbial genomes and has rendered this approach the de facto standard for small genome sequencing in our center. Further, using comparative Illumina sequencing, we found a median of one putative
consensus basecall error per finished genome. Here, we present oul consensus basecall error per finished genome. Here, we present our
experiences with RS II sequencing, a comparison of SMRT sequencing based generation of complete genomes of diverse microbial species using RS and RS II, and a comparison of available genome assemblers for these data.

Discussion

The improvement in both sequencing and assembly results using RS II is significant. Comparing PacBio bacterial genome sequencing data metrics from
our last six months (11/2012-4/2013) using RS with our first nine months using RS II, we achieved more than a doubling in passed filter reads per SMRT Cell, a nearly 200% increase in total base pair yield, and a 50% increase in subread lengths. Increased polymerase read length and longer insert libraries enabled by BluePippin size selection both contributed to the observe increased subread lengtl/
assembly metrics from the same tim periods as above. Each genome was assembled both with CA7.O and HGAP and the best assembly was selected. Of the 56 isolates sequenced on RS, 15
genomes (27%) assembled into complete genomes. The rate of genomes assembling into complete sequences on RS II increased to more than 60% (39 of 64 isolates). The RS II data also yielded increased contig N50s with an average N50 equal to 98% of genome size compared to an average N50 equa to 65% of genome size for RS

In addition to comparing sequence and assembly metrics between RS and RS data, we evaluated three genome assemblers (CA7.0, HGAP, and HGAP2) using
a subset of 14 bacterial genomes with a range of sizes and GC\%. Based upon contig count and $N 50$, each assembler produced the best assembly for some of the isolates. Though these metrics can be limited in their utility, they provide a
reasonable assessment of assembler performance on aggregate. Overall, CA7.0 reasonable assessment of assembler performance on aggregate. Overall, CAA
produced the largest number of complete genome assemblies, while HGAP2 generated the lowest mean contig count and longest mean contig N50.
In our evaluation of assembly consensus quality, we found an average of passed-filter (PF) SNPs and a median of 1 PF SNP per genome for both RS and
RS II sequenced genomes. When taking genome size into account, we find just over 1 PF SNP per million bases of genome sequence. Validations of these discrepancies are underway to determine which are PacBio consensus errors and which are due to lllumina sequencing or alignment errors. However, these
initial data indicate that bacterial genomes assembled using PacBio data alone initial data indicate that bacterial senomes

Ongoing studies are extending these comparisons to larger genomes and metagenomes, new sequencing chemistries and run lengths, and new

References

Depisto MA, et al. (2011) A frameworf for
sequencing data. Nat Genet $43(5): 491-998$

Hasan AA, et al. (2012) Genom.
National Academy of Sciences.

Koren 5, et al. (2012) Hybrid er
Nat Biotechnol 3077 : $693-700$.

Miller \lrcorner R, et al. (2008) Aggessive assembly of pyrosequencing reads with mates. Bioinformatics
$24(24) \mid 28818-2824$

Acknowledgements

Improved Yield and Diverse Finished Bacterial Genomes using Pacific Biosciences RS II SMRT Sequencing

Lisa D. Sadzewicz, Naomi Sengamalay, Xinyue Liu, Sushma Nagaraj, Qi Su, Ivette Santana-Cruz, Alvaro Godinez, Luke J. Tallon hstitute for Genome Sciences, University of Maryland School of Medicine, Bat

Consensus Quality Evaluation

 As one measure of genome consensus sequence quality, we used Illumina Miseq250 bp PE data to align to complete genomes sequenced using PacBio data alone and
assembled using one of three genome assemblers. We selected 6 genomes sequenced assembled using one of three genome assemblers. We selected 6 genomes sequenced
using RS and 6 using RS II. An average of $50 x$ Illumina coverage was aligned to the contig consensus sequence using BWA and variants were called using GATK.

Genome Assembly \& Finished Bacterial Genomes

Species	Genome Size	6c\%	Genomes	Platorm	Median	Mean Contigs	Median N 50	Mean N50	Complete Genome
Neorickettsia helminthoeca	900,000	42\%	1	RS	1	1	899,365	899,365	1
Enrichia chaffeensis	1,200,000	30\%	8	RS	2	2	1,183,219	1,179,717	6
staphylococcus aureus	2,920,000	33\%	1	RS	6	6	2,677,329	2,677,329	0
Bordetella holmesii	3,705,000	62\%	7	RS	2	3.3	3,694,298	3,092,498	3
Acinetobacter baumannii	4,300,000	39\%	6	RS	23	30	356,047	327,813	0
Mycobacteria abscessus	4,800,000	64\%	12	RS	6	14	2,094,780	2,167,167	2
Vibrio parahaemolyticus	5,165,770	45\%	10	RS	13	16	1,206,254	1,704,545	1
Mycobacteria (mixed)	5,350,000	64\%	11	RS	3	8	2,768,387	2,800,673	2
RS SUMMARY			56		7.0	10.0	1,859,335	1,855,513	15
Ricketsiales sp.	1,500,000	35\%	16	RS II	3.5	8	1,384,902	1,161,052	7
Streptococcus mitis	1,880,000	40\%	1	RSII	1	1	1,881,073	1,881,073	1
Francisella tularensis	1,900,000	32\%	2	RSII	1	1	1,874,734	1,874,734	2
Propionibacterium acnes	2,500,000	60\%	1	RS II	1	,	2,513,768	2,513,768	1
Haemophilus parasuis	2,500,000	40\%	1	RSII	1	1	2,478,759	2,478,759	1
staphlococcus aureus	2,850,000	33\%	36	RS II	2	5.7	2,727,458	2,341,993	23
Salegentibacter mishustinae	3,800,000	37\%	1	RSII	1	1	3,791,564	3,791,564	1
Clostridium sp.	4,360,000	31\%	2	RS ${ }^{\text {II }}$	1	1	4,373,190	4,373,190	2
Mycobacteria abscessus	4,800,000	64\%	3	RS II	2	5	4,818,226	4,381,566	1
Parabacteriodes sp.	7,000,000	43\%	1	RS 11	5	5	6,847,904	6,847,904	0

N50 Contig Length vs. Genome Size (Mbp)

Genome Assembler Comparison
Using 14 genomes with a range of sizes and $G C \%$, and
sequenced using both RS and RS 111 we evavuated three
genome assemblers (CA7.0, HGAP, and HGAP2) for genome assemblers (CA7.0, HGAP, and HGAP2) for
their ability to generate high-quality, complete genomes.

Complet
Genomes

